1/11 6.2.2. 完全性の証明 (Nア)完全性の証明方法 (I) 定義通りに[すべてのL]について示す (II) すでに完全であることがわかっている問題を利用する (I)の例: 定理6.7, 定理6.9(=Cookの定理(SATでTMを模倣)) 基本的には、 3SATなどは、形式 多項式時間で動く標準プログラムを考えて が一様なので扱い プログラムの動作を命題論理式で模倣する やすい →<u>とても大変(</u>手間がかかる) (II)の例: 例6.4(3SAT ≤^p DHAM), 定理6.10, ... DHAMは一般のグラフ上でNP完全 DHAMは平面グラフに限定してもパP完全 DHAMは「頂点の次数=3」に限定してもパP完全 DHAMは2部グラフに限定してもパP完全...

1/11 6.2.2. Proof for completeness Two ways to prove $(\mathcal{NP}$ -)completeness (I) show 'for all L' according to definition (II) use some known complete problems Ex for (I): Theorem 6.7, Theorem 6.9(≒Cook's Theorem; simulate TM by SAT) Basically.. Easy to manipulate For any program in standard form, since, e.g., 3SAT has a simulate it by SAT formulae uniform structure. →pretty complicated and tedious Ex for (II): Example 6.4(3SAT \leq_m^p DHAM), Theorem 6.10, ... DHAM is \mathcal{NP} -complete for general graphs DHAM is \mathcal{NP} -complete even for planar graphs DHAM is \mathcal{NP} -complete even for graphs with max degree=3 DHAM is \mathcal{NP} -complete even for bipartite graphs

2/11

定理6.10: 以下にあげる集合はすべて NP-完全
(1) 3SAT, SAT (ExSATからの還元)
(2) DHAM, VC (3SATからの還元)
(3) KNAP, BIN (3SATからの還元とKNAP ≤ BIN)

(II) NP完全性がわかっている問題からの多項式時間還元:
1. 3SAT ≤ VC
2. DHAM ≤ BIN の次数が高々5に制限されたDHAM

Vertex Cover: すべての辺の、少なくとも一方の頂点を含む集合 Hamiltonian cycle: すべての頂点を一度ずつ通る閉路

おまけ: DHAMは次数高々3でもNア完全。 高々2だと多項式時間で計算可能。 Theorem 6.10 The following sets are all NP-complete:

(1) 3SAT, SAT (reduction from ExSAT)

(2) DHAM, VC (reduction from 3SAT)

(3) KNAP, BIN (reduction from 3SAT and KNAP≤^P_m BIN)

(II) Polynomial time reductions from NP-complete problems:

1. 3SAT≤^P_m VC

2. DHAM≤^P_m DHAM with vertices of degree ≤5

Vertex Cover: a vertex set that contains at least one endpoint for each edge

Hamiltonian cycle: a cycle that visits each vertex exactly once

Note: DHAM remains NP-complete even if max degree 3.

But it is polynomial time solvable if max degree 2.

3/11

定理6.10(2): VC は \mathcal{NP} 完全問題

[証明] $VC \in \mathcal{NP}$ なので、 $3SAT \leq_m^p VC$ であることを示せばよい。 論理式 $F(x_1, x_2, \dots, x_n)$ が与えられたとする。 Fから以下の条件を満たすグラフと自然数の組< G, k > が

*F*から以下の条件を満たすグラフと自然数の組<*G, k>か* 多項式時間で構成できることを示す:

Fを1にする割当が存在する⇔Gがサイズkの頂点被覆を持つ

Gの構成(Fはn変数m項とする):

- 1. Fの各変数 x_i に対し、頂点 x_i^+, x_i^- と、辺 (x_i^+, x_i^-) を加える
- 2. Fの各項 C_j = $(l_{i1}\lor l_{i2}\lor l_{i3})$ に対し、頂点 l_{i1}, l_{i2}, l_{i3} と辺 (l_{i1}, l_{i2}) , (l_{i2}, l_{i3}) , (l_{i3}, l_{i1}) を加える
- 3. 項 C_i のリテラル l_i が x_i のときは辺 (l_i,x_i^+) を、 $\neg x_i$ のときは辺 (l_i,x_i^-) を加える。
- 4. k = n + 2m

Theorem 6.10(2): VC is \mathcal{NP} -complete

[Proof] Since VC $\subseteq \mathcal{NP}$, we show $3SAT \leq_m^P VC$.

For given formula $F(x_1,x_2,...,x_n)$, we construct a pair $\langle G,k \rangle$ of a graph and an integer in polynomial time.

There is an assignment that makes F()=1 $\Leftrightarrow G$ has a vertex cover of size k

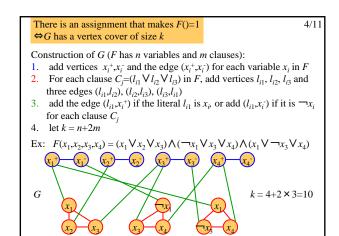
Construction of G (F has n variables and m clauses):

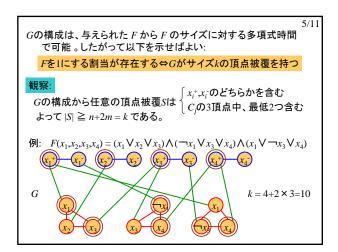
- 1. add vertices x_i^+, x_i^- and the edge (x_i^+, x_i^-) for each variable x_i in F
- 2. For each clause $C_j = (l_{i1} \lor l_{i2} \lor l_{i3})$ in F, add vertices l_{i1} , l_{i2} , l_{i3} and three edges (l_{i1}, l_{i2}) , (l_{i2}, l_{i3}) , (l_{i3}, l_{i1})
- add the edge (*l_{i1}x_i*⁺) if the literal *l_{i1}* is *x_i*, or add (*l_{i1}x_i*⁻) if it is ¬*x_i* for each clause *C_i*
- 4. let k = n + 2m

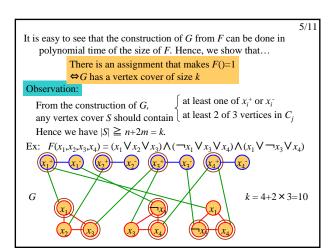
3/11

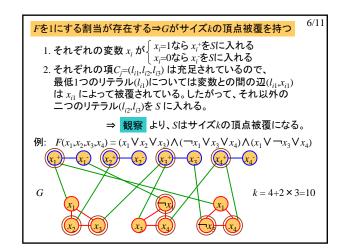
1

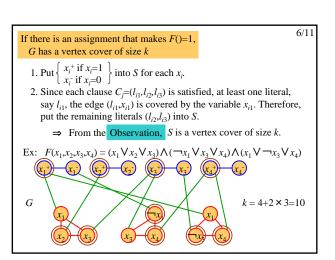
Fを1にする割当が存在する \Leftrightarrow Gがサイズkの頂点被覆を持つ 4/11 Gの構成(Fはn変数m項とする): 1. Fの各変数 x_i に対し、頂点 x_i^+, x_i^- と、辺(x_i^+, x_i^-)を加える 2. Fの各項 C_i =(l_{i1} \lor l_{i2} \lor l_{i3})に対し、頂点 l_{i1} , l_{i2} , l_{i3} と辺(l_{i1} , l_{i2}), (l_{i2} , l_{i3}), (l_{i3} , l_{i1})を加える 3. 項 C_i 00リテラル l_{i1} が x_i 0 ときは辺(l_{i1} , x_i^+) を、 $\neg x_i$ 0 ときは辺(l_{i1} , x_i^-) を加える。 4. k=n+2m例: $F(x_1, x_2, x_3, x_4) = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4)$



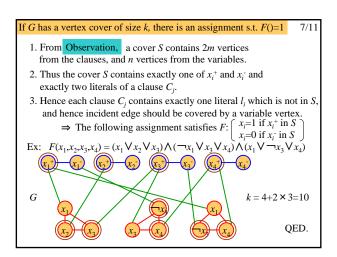


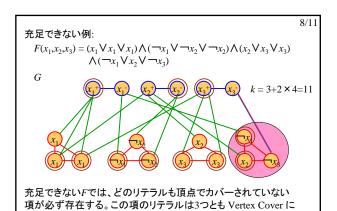




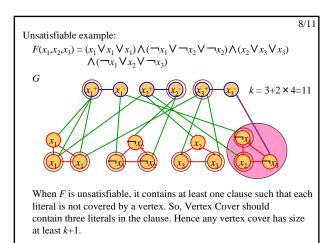


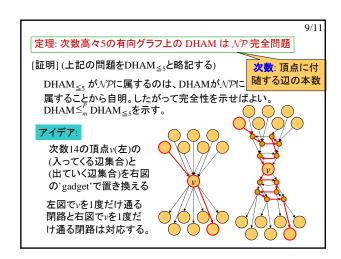
Gがサイズkの頂点被覆を持つ \Rightarrow Fを1にする割当が存在する 7/11 1. 観察 kり、被覆Sは項から2m個、変数からn個の頂点を含む。 2. さらに各変数 x_i については x_i +か x_i の一方しか、各項 C_i についてはちょうど2つの頂点しかSに含むことができない。 3. よって各項 C_i はSに含まれないリテラルiを含むが、これに付随する辺は他方が被覆されていなければならない。 $\Rightarrow \begin{pmatrix} x_i$ +かSに含まれるなら x_i =1 x_i -かSに含まれるなら x_i =0 x_i -か x_i -か x_i -か x_i -の という割当は x_i -か x_i -の例: x_i -か x_i -のの頃、 x_i -か x_i -のの何にない。 x_i -ののの何にない。 x_i -ののののではない。 x_i -のののではない。 x_i -のののではない。 x_i -のののではない。 x_i -ののではない。 x_i -ののではないい。 x_i -ののではない、 x_i -ののではない。 x_i -ののではない、 x_i -ののではない。 x_i -ののではない、 x_i -のので

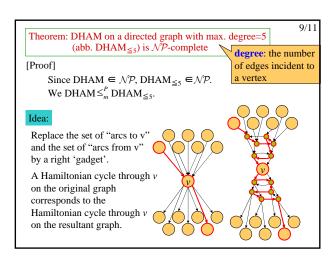


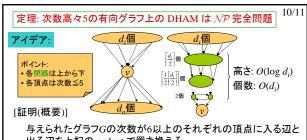


入れざるを得ない。よって Vertex Cover のサイズは k+1以上になる。









出る辺を上記の gadget で置き換える。

- 1. 元のグラフGがn頂点m辺であったなら、gadget で置き換えた あとのグラフG'は O(n+m)頂点 O(m)辺となる。したがって上 記の還元はGの大きさの多項式時間で可能。
- またG'のすべての頂点は次数はたかだか5である。
- Gがハミルトン閉路をもつ⇔G'がハミルトン閉路を持つ QED.

10/11 Theorem: DHAM on a directed graph with max. degree=5 (abb. DHAM $_{\leq 5}$) is \mathcal{NP} -complete Idea: **Points** • Up to down via cycle • Each vertex has deg≦5 height: $O(\log d_i)$ number: $O(d_i)$ [Proof (sketch)] For each vertex v of degree ≥ 6 , replace the edges around vby the gadget. 1. If the original graph G has n vertices with m edges, the resultant graph G' contains O(n+m) vertices with O(m) edges. Hence the reduction can be done in polynomial time of n & m.

- 2. Each vertex in G' has degree at most 5.
- 3. G has a Hamiltonian cycle $\Leftrightarrow G'$ has a Hamiltonian cycle. OED.

おまけ(Addition)

• Ryuhei Uehara, Shigeki Iwata: Generalized Hi-Q is \mathcal{NP} -complete,

The Transactions of the IEICE, E73, p.270-273, 1990.

- Peisen Zhang, Huitao Sheng, Ryuhei Uehara: A Double Classification Tree Search Algorithm for Index SNP Selection, BMC Bioinformatics, 5:89, 2004.
- · Sachio Teramoto, Erik D. Demaine, Ryuhei Uehara: Voronoi Game on Graphs and Its Complexity, 2nd IEEE Symp. on Computational Intelligence and Games, p.265-271, 2006.
- Ryuhei Uehara, Sachio Teramoto: Computational Complexity of a Pop-up Book, 4th International Conference on Origami in Science, Mathematics, and Education, 2006.

残りの予定(Schedule)

• 11/30 (Fri):

11/11

・持ち込み不可(No text, No notes, ...)

- 期末試験と6回目のレポートの回収(Final Exam. & 6th report submission.)
- オフィスアワー(Office Hour): 6回目のレポートの解答と 解説、期末試験の解答と解説(Answers and comments for 6th report and final exam.)
- 上記以降(After that...):
 - 成績などの問い合わせはメールで(Ask by e-mail if you have any questions about records, etc.)
 - レポート、試験の返却希望者は適宜取りにくること(Come to my office to receive the reports and/or final exam, if you want.)