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Introduction

Representative approaches to (AVP-)hard problems
are...

o approximation algorithms

o exact algorithms with exponential time

0 restrictions on inputs
some special graph classes
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A graph G=(V,E) is an intersection
graph over set V of objects iff

IﬂthdUCtiOﬂ {v,u} is in E if and only if corresponding

objects are overlapping.

We will mainly discuss about

o Chordal graphs and interval graphs
typical intersection graphs

many applications
0 matrix manipulation, bioinformatics, scheduling, ...

many useful graph theoretic properties
0 typical subclasses of Perfect Graphs

1960 [Berge]: Strong Perfect Graph Conjecture

l

2002 [Chudnovsky, Cojnuejols, Liu, Seymour, and Vuskovic]:

Strong Perfect Graph Theorem 3/15



Introduction

We will mainly discuss about

o Chordal graphs and interval graphs
typical intersection graphs
many applications
0 Matrix manipulation, bioinformatics, scheduling, ...
many useful graph theoretic properties
0 typical subclasses of Perfect Graphs

O many NP-hard problems become tractable on those

graph classes

/\ several problems are still hard on those graph
classes
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[Today’'s Goal]
Intefval Graphs For any given interval graph, its maximum

cligue can be found in linear time.
(C.f., the maximum clique problem is NP-

complete in general.)

Simplest intersection graphs
o Since 1957- (Hajos (Graph theorist) & Benzer (Biologist))

[Definition 1] A graph G=(V,E) with V={v,,v,,...,v } is an interval
graph if and only if there is a set Z of intervals {I, I,,..., | .}
such that {v;, v} €E if and only If I; intersects I;. We call Z

an interval representation of G.

interval representation corresponding graph
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[Description]
open interval... @—e

Intel’V al Gf aphs closed interval.. .o

mixed interval... o—e o—o +—o

Interval representations of an interval graph

o IS an interval open or closed?
open... e.g., (1,5) does not contain the value 5.

closed... e.g., [2,8] contains the value 8.
Let C,, C., C,, be the classes of interval graphs that consist of
open intervals, closed intervals, and mixed, respectively.

[Theorem 1] C,=C.=C,, [Notation]
For an interval I, we denote
(Proof) We show that @D C,=C,. @ C.<C,, and the left endpoint by L(l), and
@ C,EC,. the right endpoint by R(1).

@ Let Z, be an interval representation of an interval graph G
such that Z_ only contains open intervals. Then, we
construct Z_ that is an interval representation of G and Z_

only contains closed intervals as follows.
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[Description]
open interval... @—e

Intel’V al Gf aphs closed interval.. .o

mixed interval... o—e o—o +—o

Interval representations of an interval graph
[Theorem 1] C,=C.=C,

(Proof) We show that D C,€C, @ C,SC,,and @ C,EC..

@ Let Z, be an interval representation of an interval graph G such that Z
only contains open intervals. Then, we construct Z_ that is an interval
representation of G and Z_ only contains closed intervals as follows.

For each point p that is an endpoint of at least one interval,
we modify the intervals as follows for sufficiently small € :

—  — Repeating this process, we can obtain a
*~— | closed interval representation Z_ of G.
—e — @ is trivial, and @ is similar to .
- 7‘%\ Hence we have the theorem. [l
P

p-€ pte
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Interval Graphs

Interval representations of an interval graph

o Hereatfter,
By Theorem 1, we assume that all intervals are closed.

All endpoints are integers, and leftmost endpoint is O.

o We have two natural interval models;
Each endpoint takes distinct value in [0..2n-1] with n vertices
(conversely, each integer in [0..2n-1] corresponds to exactly
one endpoint).
We admit L(I)=R(l), that is, the length of an interval can be 0,
and intervals have no redundancy.

T iiiiieH sl | Wecallthe second type
————— = = “compact representation”.
A A
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[Notation]
For a point p, let N[p] denote

Iﬂterval Gfaphs the set of intervals that contain p.

Compact interval representations of an interval graph

[Definition 2] An interval representation Z is called compact if
It satisfies the following conditions;
1. (all endpoints are integers and the leftmost endpoint is 0,)

2. each integer i corresponds to at least one endpoint with
0=i=k for some positive integer k, and

5. for each integer i with 0=i<k, we have N[iJz N[i+1] and

N[i+1] < N[i].

2 : 3 1 1+1 i+1
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Interval Graphs

[Notation]
For an interval representation Z,

we denote by L(Z):=min,_; L(I)
and by R(Z) :=max,_; R(l)

Compact interval representations of an interval graph

[Theorem 2] Let Z be a compact interval representation of a

connected interval graph G=(V,E) of n vertices with n=2.
Then L(Z)=0 and R(Z)=k for some integer k. Then, k=n-2.

[Lemma 1] Let Z be a compact interval representation of a

connected interval graph G=(V,E). Then there exists an
interval | €7 such that [L(1),R(1)]=[0,0].

(Proof) of Lemma 1. We have two cases;
. [L(Z),R(2)]=[0,0] (C.f. G is a complete graph): Trivial.
2. R(Z2)>0: If there are no such intervals, we have N[1]=N[2]

or N[1]CN|2]. Both cases contradict to the assumption
that 7 is a compact interval representation. J
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[Notation]
For an interval representation Z,

Iﬂtefval Gfﬂphs we denote by L(Z)=min,_; L(I)
and by R(Z) :=max,_; R(l)

Compact interval representations of an interval graph

[Theorem 2] Let Z be a compact interval representation of a

connected interval graph G=(V,E) of n vertices with n=2.
Then L(Z)=0 and R(Z)=k for some integer k. Then, k=n-2.

(Proof) of Theorem 2. We prove by induction for k.

1. k=0: The graph G is a complete graph, and easy to see
that k=n-2.

2. k>0: By Lemma 1, there are x intervals | with R[I1]=L[1]=0
with x>0. We then remove them from Z and obtain Z” with

n-x intervals. Then, by the inductive hypothesis, we have
k-1=n-x-2. Hence we have k=n-2 since x>0.
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Interval Graphs

[Notation]
For an interval representation Z,

we denote by L(Z):=min,_; L(I)
and by R(Z) :=max,_; R(l)

Compact interval representations of an interval graph

[Theorem 3] Let Z be a compact interval representation of a

connected interval graph G=(V,E) of n vertices with n=2. Then
N[i] induces a maximal clique of G for each i in [L(Z),R(Z)].

Moreover, each maximal clique M of G satisfies M=N[i] for
some I. That is, they make one-to-one mapping.

°
¢ o

12/15




[Notation]
For an interval representation Z,

Iﬂtefval Gfaphs we denote by L(Z)=min,_; L(I)
and by R(Z) :=max,_; R(l)

Compact interval representations of an interval graph

(Proof) of latter half which says a maximal clique M satisfies
M=N[i] for some I.

To derive a contradiction, we assume that there are no such
index i. Let i’ be the index such that [N(i”’) N M| |N(i”") N M| for
any other I”. Then there is an interval I; such that v;€M and |,
¢ N[i]. Without loss of generality, we assume that R(1;)<I.

By assumption of I’, there is a vertex v, €M such that I, EN(i’)
and L &N[R(1;)] since [N(1") N I\/I|z|N(R(Ij)) N M| and L;EN(R(;)-
N(I’). Then, I, and |; cannot intersect, which contradicts that M
contains v, and v;.
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Interval Graphs

[Notation]
For an interval representation Z,

we denote by L(Z):=min,_; L(I)
and by R(Z) :=max,_; R(l)

Compact interval representations of an interval graph

(Proof) of former half which says N[i] induces a maximal clique

M for each 1.

It is easy to see that NJi] induces a cligue C. Hence we show C
IS maximal. To derive a contradiction, we assume that CCM

for some maximal clique M.

Then, by the latter half of the proof, there exists | such that N[j]
Induces M. Without loss of generality, we assume I<j.

Then, it Is not difficult to see that there are two indices I’ and J’
with i=i’<j” =j such that N[i’]JCNJj’], which contradicts that Z

IS compact.

O
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[Notation]
For an interval representation Z,

Iﬂterval Gfaphs we denote by L(Z)=min,_; L(I)
and by R(Z) :=max,_; R(l)

Compact interval representations of an interval graph

[Theorem 4] Any connected interval graph G=(V,E) with |V|>1
has at most |V|-1 maximal cliques.

(Proof) Immediately from Theorems 2 & 3. O

[Theorem 5] For any connected interval graph G=(V,E) given in a
compact interval representation form, its maximum clique can
be found in O(|V|) time.

(Proof) Roughly, sweep the interval representation and check
N[i] for each integer i. Details will be discussed in the future
class with suitable data structure. O
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