

Algorithms on Interval/Chordal Graphs

Some efficient algorithms on the graphs

o based on the graph properties, especially;
[Thm 5] Every interval graph has a compact representation in
[1..|V]], and all maximal cliques appear on the representation.
... we can solve many problems by “sweeping” from left to right.
[Thm 6] In a chordal graph, every separator is a clique.
... Which allows us to use “divide-and-conquer.”
[Thm 9] A chordal graph is an intersection graph of subtrees of
a tree.
... which generalizes the results on interval graphs;
each node of the tree can correspond to a maximal clique,
the number of nodes can be at most |V]|.
... which allows us “dynamic programming” on the tree.

The tree is called “clique tree,” but it requires more detailed analysis
to make it “compact” since [Thm 9] does not construct a compact one.

Algorithms on Interval/Chordal Graphs

Basic problems
o graph isomorphism asks if two graphs are essentially
‘same”.

its difficulty is hereditary; superclass is more difficult and
subclass is easier.

graph isomorphism is hard for chordal graphs (and its
superclasses)

graph isomorphism is linear time solvable for interval graphs
(and its subclasses)

0 graph recognition determines if a given graph is in the class.

its difficulty is not hereditary; we need specified algorithm for
each graph class

chordal graphs can be recognized in linear time
Interval graphs can be recognized in linear time

3/18

‘ Graph Isomorphism

= The graph isomorphism problem

o asks if there is a one-to-one mapping of vertex sets
which keeps adjacency relationship.

4/18

‘ Graph Isomorphism

= The graph isomorphism problem

o asks if there is a one-to-one mapping of vertex sets
which keeps adjacency relationship.

5/18

Graph Isomorphism

The graph isomorphism problem

o asks if there is a one-to-one mapping of vertex sets
which keeps adjacency relationship.

The GI problem is very natural basic problem.
o Itis in AP, but it is not known if it is in P or N'P-

complete

long standing open problem
many researchers feel it is easier than A’/P-complete problems

one candidate between P and AN/P-complete problems.

o Hence we introduce ‘Gl-completeness’;

the GI problem is Gl-complete on a graph class C if the Gl
problem is still as hard as the usual one even on the class C.

6/18

Graph Isomorphism

The GI problem Is very natural basic problem.

o Hence we introduce ‘Gl-completeness’;

the Gl problem is Gl-complete on a graph class C if the Gl
problem is still as hard as the usual one even on the class C.

[Example 1] The GI problem for bipartite graphs is Gl-complete.

(Proof) For any given graph G=(V,E), we
construct G’=(V’,E’) as follows;
. V:=VUE
2. E'={{ev}Hvee€cE}
It is easy to see that
1. G’ iIs bipartite for any G, and

2. G,”and G,” are isomorphic iff G, and G,
are iIsomorphic. 0O

7/18

Graph Isomorphism

The GI problem Is very natural basic problem.

o For our graph classes...
The GI problem on interval graphs is solvable in linear time.
Chordal graphs are Gl-complete.

[Theorem 10] The GI problem for trees can be solved in linear
time.

(Proof) Exercise! (Or report?) 0O

[INote] Theorem 10 is strongly related to the Gl-problem for
several graph classes including interval graphs.

[Today’s First Goall]
1. The results for interval graphs are postponed after recognition.
2. Gl-completeness of chordal graphs.

8/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is Gl-complete.

(Proof) It is sufficient to show that the GI problem for general
graphs can be reduced to the GI problem for chordal graphs
by a polynomial time reduction.

Let G=(V,E) be a given (general) graph, and E:E/Q
G’=(V’,E’) be a graph constructed as follows;
. V:=VUE
2. E’ consists of
. {u,e}, {v,e}ife={u,v}inE, @/Q
2. {e,e,} foralle;,e,inE.

9/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is Gl-complete.

(Proof) It is sufficient to show that the GI problem for general
graphs can be reduced to the GI problem for chordal graphs
by a polynomial time reduction.

It is sufficient to show that

1. G’ Is a chordal graph, and E:E/Q

2. G; and G, are isomorphic iff so are G;” and
G,

10/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is Gl-complete.

(Proof) It is sufficient to show that the GI problem for general
graphs can be reduced to the GI problem for chordal graphs
by a polynomial time reduction.

1. G’ Is a chordal graph;

E, which are joined by a chord.

any cycle C=(v,v,,...,v,,v,) of length at i:i/g
least 4 contains at least two vertices In

11/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is Gl-complete.

(Proof) 2. G, Isisomorphic to G, Iff so are G,” and G,’
< G can be reconstructed from G’ up to isomorphism.
For given G’=(V’,E’),
1. E can be determined by the set of vertices

1. E induces a clique
2. each of them have two neighbors in V’-E.

2.V is determined by V’-E, and G can be
reconstructed uniquely. O

12/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is Gl-complete.
INote] The chordal graph in the proof of [Theorem 11] is a
special chordal graph G=(V,E);

oV can be partitioned into two sets X and Y such that G[X]
Induces a cligue and G[Y] induces an independent set.

Such graphs are called “split graphs.”
[Corollary 2] The GI problem for split graphs is Gl-complete.

I L

13/18

Algorithms on Interval/Chordal Graphs

The graph recognition problem

o difficulty is not hereditary; we need specified algorithm for
each graph class

chordal graphs can be recognized in linear time
interval graphs can be recognized in linear time

Very rough history...
o chordal graph

Lexicographically breadth first search
Maximum cardinality search

o Interval graph

based on canonical tree representations
based on LexBFS
based on modular decompositions

14/18

Recognition of Interval/Chordal Graphs

Rough history of the graph recognition

o chordal graph... linear time recognition by
Lexicographically breadth first search (LexBFS)

0 [Rose, Tarjan, Lueker 1976]

o [Tarjan, Yannakakis 1984]

: . Those two algorithms are so “good
Maximum cardinality search | 4t \we have no chance to “improve”

g

o Interval graph... linear time recognition b

1970s-80s; based on canonical tree representations

y

0 [Booth, Lueker 1976], [Lueker, Booth 1979], [Korte, MOhring 1989]

1990s: based on LexBFS

0 several papers...,[Corneil, Olariu, Stewart 1998]

2000-?; based on modular decompositions

O some papers..., [McConnell, de Montgolfier 2005]

Those algorithms have more detailed history,
which will be explained later (not today)...

e

15/18

[Today’s Next Goal]
3. Brief introduction of MCS (and LexBFS).

Recognition of q C e Ierone

Rough history of the graph recognition of chordal graphs

o Lexicographically breadth first search (LexBFS)
by [Rose, Tarjan, Lueker 1976]

LexBFS is used to recognize several graph classes
Including

0 chordal graphs, interval graphs, cographs, Ptolemaic graphs, unit
interval graphs, ...

A survey for (only?) LexBFSs can be found in [Cornell
2004], which is an invited talk at WG 2004.

o Maximum cardinality search (MCS)
by [Tarjan, Yannakakis 1984]
A relatively few related results are known about MCS.

o LexBFS and MCS are simple for implementation, have
good property, and hence they are well investigated.

16/18

Recognition of a Chordal Graph

LexBFS and MCS are a kind of “search” algorithms.
o Both algorithms find reverse of a PEO as follows;
1. put any vertex as v,,;

(6)
». foreachi=n-1,n-2,...,1):‘D:‘

find the next vertex and put it as v; ¢

[Observation 1] Any vertex can be the last vertex of a PEO on a
chordal graph.

(Proof) Exercise!! (Hint: consider the tree model.)

[Point] How can we find the next vertex?

17/18

Recognition of a Chordal Graph

LexBFS and MCS are a kind of “search” algorithms.
o Both algorithms find reverse of a PEO as follows;
1. put any vertex as v,,;

(6)
». foreachi=n-1,n-2,...,1):‘D:‘

find the next vertex and put it as v; ¢

[Point] How can we find the next vertex?

IMCS] the next vertex v; Is determined by
Vi i= max [N(Vy) N Ve, Vigs -V s

which is the reason why we call it ’:":‘ ’:":‘
“maximum cardinality” search.

(Ties are broken in any way.)

18/18

