
1/18

I618 Advanced Computer Science II
(Part II)

Ryuhei Uehara
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

12/21 11:00-12:30
1/ 7 15:10-16:40
1/ 9 9:20-10:50
1/11 11:00-12:30
1/16 9:20-10:50

I will give you some report problems on January.

2/18

Algorithms on Interval/Chordal Graphs
Some efficient algorithms on the graphs

based on the graph properties, especially;
[Thm 5] Every interval graph has a compact representation in
[1..|V|], and all maximal cliques appear on the representation.
… we can solve many problems by “sweeping” from left to right.
[Thm 6] In a chordal graph, every separator is a clique.
… which allows us to use “divide-and-conquer.”
[Thm 9] A chordal graph is an intersection graph of subtrees of
a tree.
… which generalizes the results on interval graphs;

each node of the tree can correspond to a maximal clique,
the number of nodes can be at most |V|.

… which allows us “dynamic programming” on the tree.

The tree is called “clique tree,” but it requires more detailed analysis
to make it “compact” since [Thm 9] does not construct a compact one.

3/18

Algorithms on Interval/Chordal Graphs
Basic problems

graph isomorphism asks if two graphs are essentially
“same”.

its difficulty is hereditary; superclass is more difficult and
subclass is easier.
graph isomorphism is hard for chordal graphs (and its
superclasses)
graph isomorphism is linear time solvable for interval graphs
(and its subclasses)

graph recognition determines if a given graph is in the class.
its difficulty is not hereditary; we need specified algorithm for
each graph class
chordal graphs can be recognized in linear time
interval graphs can be recognized in linear time

4/18

Graph Isomorphism
The graph isomorphism problem

asks if there is a one-to-one mapping of vertex sets
which keeps adjacency relationship.

5/18

Graph Isomorphism
The graph isomorphism problem

asks if there is a one-to-one mapping of vertex sets
which keeps adjacency relationship.

6/18

Graph Isomorphism
The graph isomorphism problem

asks if there is a one-to-one mapping of vertex sets
which keeps adjacency relationship.

The GI problem is very natural basic problem.
It is in NP, but it is not known if it is in P or NP-
complete

long standing open problem
many researchers feel it is easier than NP-complete problems
one candidate between P and NP-complete problems.

Hence we introduce ‘GI-completeness’;
the GI problem is GI-complete on a graph class C if the GI
problem is still as hard as the usual one even on the class C.

7/18

Graph Isomorphism
The GI problem is very natural basic problem.

Hence we introduce ‘GI-completeness’;
the GI problem is GI-complete on a graph class C if the GI
problem is still as hard as the usual one even on the class C.

[Example 1] The GI problem for bipartite graphs is GI-complete.
(Proof) For any given graph G=(V,E), we

construct G’=(V’,E’) as follows;
1. V’:=V∪E
2. E’:={{e,v}|v ∊ e ∊ E}
It is easy to see that
1. G’ is bipartite for any G, and
2. G1’ and G2’ are isomorphic iff G1 and G2

are isomorphic.

8/18

Graph Isomorphism
The GI problem is very natural basic problem.

For our graph classes…
The GI problem on interval graphs is solvable in linear time.
Chordal graphs are GI-complete.

[Theorem 10] The GI problem for trees can be solved in linear
time.

(Proof) Exercise! (Or report?)

[Today’s First Goal]
1. The results for interval graphs are postponed after recognition.
2. GI-completeness of chordal graphs.

[Note] Theorem 10 is strongly related to the GI-problem for
several graph classes including interval graphs.

9/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

(Proof) It is sufficient to show that the GI problem for general
graphs can be reduced to the GI problem for chordal graphs
by a polynomial time reduction.

Let G=(V,E) be a given (general) graph, and
G’=(V’,E’) be a graph constructed as follows;

1. V’:=V∪E
2. E’ consists of

1. {u,e}, {v,e} if e={u,v} in E,
2. {e1,e2} for all e1, e2 in E.

10/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

(Proof) It is sufficient to show that the GI problem for general
graphs can be reduced to the GI problem for chordal graphs
by a polynomial time reduction.

It is sufficient to show that
1. G’ is a chordal graph, and
2. G1 and G2 are isomorphic iff so are G1’ and

G2’.

11/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

(Proof) It is sufficient to show that the GI problem for general
graphs can be reduced to the GI problem for chordal graphs
by a polynomial time reduction.

1. G’ is a chordal graph;
any cycle C=(v1,v2,…,vk,v1) of length at

least 4 contains at least two vertices in
E, which are joined by a chord.

12/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

(Proof) 2. G1 is isomorphic to G2 iff so are G1’ and G2’
⇔ G can be reconstructed from G’ up to isomorphism.

For given G’=(V’,E’),
1. E can be determined by the set of vertices

1. E induces a clique
2. each of them have two neighbors in V’-E.

2. V is determined by V’-E, and G can be
reconstructed uniquely.

13/18

Graph Isomorphism
The GI problem for chordal graphs

[Theorem 11] The GI problem for chordal graphs is GI-complete.

[Note] The chordal graph in the proof of [Theorem 11] is a
special chordal graph G=(V,E);

V can be partitioned into two sets X and Y such that G[X]
induces a clique and G[Y] induces an independent set.

Such graphs are called “split graphs.”

[Corollary 2] The GI problem for split graphs is GI-complete.

X

Y

14/18

Algorithms on Interval/Chordal Graphs
The graph recognition problem

difficulty is not hereditary; we need specified algorithm for
each graph class

chordal graphs can be recognized in linear time
interval graphs can be recognized in linear time

Very rough history…
chordal graph

Lexicographically breadth first search
Maximum cardinality search

interval graph
based on canonical tree representations
based on LexBFS
based on modular decompositions

15/18

Recognition of Interval/Chordal Graphs
Rough history of the graph recognition…

chordal graph… linear time recognition by
Lexicographically breadth first search (LexBFS)

[Rose, Tarjan, Lueker 1976]
Maximum cardinality search

[Tarjan, Yannakakis 1984]

interval graph… linear time recognition by
1970s-80s; based on canonical tree representations

[Booth, Lueker 1976], [Lueker, Booth 1979], [Korte, Möhring 1989]
1990s; based on LexBFS

several papers…,[Corneil, Olariu, Stewart 1998]
2000-?; based on modular decompositions

some papers…, [McConnell, de Montgolfier 2005]

Those two algorithms are so “good”
that we have no chance to “improve”

Those algorithms have more detailed history,
which will be explained later (not today)…

16/18

Recognition of a Chordal Graph
Rough history of the graph recognition of chordal graphs

Lexicographically breadth first search (LexBFS)
by [Rose, Tarjan, Lueker 1976]
LexBFS is used to recognize several graph classes
including

chordal graphs, interval graphs, cographs, Ptolemaic graphs, unit
interval graphs, …

A survey for (only?) LexBFSs can be found in [Corneil
2004], which is an invited talk at WG 2004.

Maximum cardinality search (MCS)
by [Tarjan, Yannakakis 1984]
A relatively few related results are known about MCS.

LexBFS and MCS are simple for implementation, have
good property, and hence they are well investigated.

[Today’s Next Goal]
3. Brief introduction of MCS (and LexBFS).

17/18

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.

Both algorithms find reverse of a PEO as follows;
1. put any vertex as vn;
2. for each i=n-1, n-2, …, 1

1. find the next vertex and put it as vi

[Observation 1] Any vertex can be the last vertex of a PEO on a
chordal graph.

(Proof) Exercise!! (Hint: consider the tree model.)

2

3

6

7

4

5

1

[Point] How can we find the next vertex?

18/18

Recognition of a Chordal Graph
LexBFS and MCS are a kind of “search” algorithms.

Both algorithms find reverse of a PEO as follows;
1. put any vertex as vn;
2. for each i=n-1, n-2, …, 1

1. find the next vertex and put it as vi

2

3

6

7

4

5

1
[Point] How can we find the next vertex?

[MCS] the next vertex vi is determined by
vi := max |N(vi)∩{vi+1,vi+2,…,vn}|,

which is the reason why we call it
“maximum cardinality” search.
(Ties are broken in any way.)

2

3

6

7

4

5

1

2

3

6

7

4

5

1

