

Algorithms on Interval/Chordal Graphs

Basic problems
0 graph isomorphism;

graph isomorphism is Gl-complete for chordal
graphs [Donel]

graph isomorphism is linear time solvable for
Interval graphs [Postponed after recognition]

0 graph recognition;
chordal graphs can be recognized in linear time
0 LexBFS & MCS =

Interval graphs can be recognized in linear time
0O canonical tree representation

0 multi-sweep LexBFSs

0 modular decomposition

2/19

Recognition of a Chordal Graph

LexBFS and MCS are a kind of “search” algorithms.
o Both algorithms find reverse of a PEO as follows;

1. putany vertex as v,, @
2. foreachi=n-1,n-2,...,1):‘0)2‘
find the next vertex and put it as v;
[Point] How can we find the next vertex?
IMCS] the next vertex v; has the most numbered neighbors,
which is determined by
V; = max N(v;) N {Vi,1,Visor- Vs
which is the reason why we call it
“maximum cardinality” search.
(Ties are broken in any way.)

3/19

Recognition of a Chordal Graph
Lexicographically Breadth First Search;

[Definition 8] Lexicographical ordering of two strings
X=XX,...X, and Y=y,y,...y,, are defined as follows
(usual ordering in dictionary):

X<Y If and only if

31 x<y;, and x;=y; for all j<I, or

iIf x;=y; for all i in [1..min{n,m}], X<Y if n<m or Y<X if n>m
(Otherwise, we have X=Y.)
E.g., £<0101<01010<01011<01100<1

o We can apply the lex. ordering over ordered sets;
(1,2,3)<(1,2,3,4)<(1,2,5)<(1,3,4)
(3,2,1)<(4,3,1)<(4,3,2,1)<(5,2,1)

4/19

Recognition of a Chordal Graph

LexBFS and MCS are a kind of “search” algorithms.
o Both algorithms find reverse of a PEO as follows;
1. put any vertex as v,

n
2. for each |_n'1 n'2 ‘ﬂ‘ ‘@‘
find the next vertex and put It as v;
[Point] How can we find the next vertex?

[LexBFS] the next vertex v; is determined by the reverse of the
lexicographically ordering of the neighbor sets

N(V) N{V, Vg, Visd }
where neighbor sets are ordered in reverse of PEO.

(Ties are broken in any way.) /\

This is a natural ordering if we compute the reverse
of a PEO, which appears some papers... 5/19

‘ Recognition of a Chordal Graph

[LexBFS] the next vertex v; is determined by the reverse of the
lexicographically ordering of the neighbor sets

N(V) N{V, V-0 Visg)
where neighbor sets are ordered in reverse of PEO.
(Ties are broken in any way.)

(4) (7 (10) (10)

9)8) (6

CIRN() (10)9)

6/19

‘ Recognition of a Chordal Graph

= LexBFS and MCS are a kind of “search” algorithms.

[LexBFS] the next vertex v; is determined by the reverse of the
lexicographically ordering of the neighbor sets

N(V) N{V, V-0 Visg)
where neighbor sets are ordered in reverse of PEO.
. Once we divide a set Into two subsets
[Natural explanation]

by neighborhood, the relationship
0000000

never be broken.

-
o (-0-0-B
JOLLT [18]

Implementation is easy by a priority queue. 7/19

Recognition of a Chordal Graph

LexBFS and MCS are a kind of “search” algorithms.

[Theorem 12] Let G=(V,E) be any graph. Then we can

determine if G is chordal or not in O(|V|+|E|) time and space.

To prove Theorem 12, we need two lemmas;

[Lemma 2] Let G be any chordal graph. Then
1. output of LexBFS is a PEO of G, and
2. output of MCS is a PEO of G.

[Lemma 3] Let vy, v,, ..., v, be any ordering over V.
Then we can determine if it is a PEO or not Iin
linear time.

(Proof of Lemma 3) Omitted; check the papers!

8/19

‘ Recognition of a Chordal Graph

= LexBFS and MCS are a kind of “search” algorithms.
We only show a part of proofs briefly...

[Lemma 2] Let G be any chordal graph. Then
1. output of LexBFS is a PEO of G.

[INote before proof] Not necessarily all vertex orderings of
a chordal graph are PEO.

[Example 2]

For a chordal graph m

@-0-@saro @ @ @ isnotareo

9/19

Recognition of a Chordal Graph

LexBFS and MCS are a kind of “search” algorithms.
We only show a part of proofs briefly...

[Lemma 2] Let G be any chordal graph. Then
1. output of LexBFS is a PEO of G.

[Proof (Sketch)] To derive contradictions, assume that
LexBFS outputs a vertex ordering vy, v, ..., v, which is
not a PEO for a chordal graph G.

Then there is a non-simplicial vertex v; in G[{V;,Vi,,...,V }].
Thus N(v;) N {vi,,,...,V,} contains two non-adjacent vertices
v; and v,. We take the maximum v; and maximum pair in

N(v;). P

Wt O W0 W O W

Recognition of a Chordal Graph

LexBFS and MCS are a kind of “search” algorithms.

[Lemma 2] For any chordal graph G, an output of LexBFS
Is a PEO of G.

[Proof (Sketch)] In LexBFS, exceptv,, each v is added into the
ordering by a “precedessor” u; v is added because v is in N(u).

Thus, from v; and v,, we repeat to find precedessors until
we meet the (first) common vertex v,.

Then, we have a cycle (v;v;,...,v;,...,v,,v;) of length at least 4
with {v;v,} #E.

11/19

Recognition of a Chordal Graph

LexBFS and MCS are a kind of “search” algorithms.

[Lemma 2] For any chordal graph G, an output of LexBFS
Is a PEO of G.

[Proof (Sketch)] We have a cycle (v,v;,...,v;,...,v,,v;) with {v;,v, }¢ E.

Since G is chordal, v; has to have a neighbor v|. between v;
and v,. Then, with careful analysis of LexBFS and
maximality of taking the vertices, we have to have {v,,v,}€E,
and we conclude v;<v; or v,<v;, which is a contradiction. O

12/19

Algorithms on Interval Graphs

o Graph recognitions of interval graphs

based on canonical tree representation ¢
0 which construct the tree representation

0 using the tree, we can solve graph isomorphism in linear
time.

based on multi-sweep LexBFSs

o which try to embed given graph into a specific interval
representation

0 tie breaking rule of LexBFS is very important
based on modular decomposition

0 which decompose given graph into disjoint components
which are called modular

13/19

Algorithms on Interval Graphs

o Canonical Tree representation of an interval graph
o Basic idea comes from simple observation...

[Observation 2] For an interval graph G, there are several
distinct compact interval representations.

¢0 e [e3 7

I:l intervals can be ordered in arbitrary ordering
I:l intervals can be ordered in “forward” or “backward.”

14/19

Algorithms on Interval Graphs

o Canonical Tree representation of an interval graph

[Definition 9] A PQ-tree consists of two kinds of nodes,
called P-nodes and Q-nodes.

o The children of a P-node are ordered in arbitrary way.
o The children of a Q-node are ordered in forward or

backward.
| Q-node
[Theorem 13] For any interval graph G, its all | |
affirmative compact interval representations b node

can be represented by one PQ-tree, where
each leaf corresponds to a maximal cliques
In the interval graph.

([Theorem 3] Each integer point corresponds to a maximal
cligue on a compact interval representation...) 15/19

Algorithms on Interval Graphs

o Canonical Tree representation of an interval graph

[Theorem 13] For any interval graph G, its all affirmative
compact interval representations can be represented by
one PQ-tree, where each leaf corresponds to a maximal
cligues in the interval graph.

. | Q-node

60 e S

P-node

c, C, C, C, C; C,

Y Y cacGagc

I 5; —_ Each vertex has to appear in
C, C, C.C, C, C, consecutive cliques.

16/19

Algorithms on Interval Graphs

o Canonical Tree representation of an interval graph

[Theorem 14] A graph G is an interval graph if and only if it
has a unique PQ-tree for its maximal cliques.

| Each vertex
| has to

appear in
consecutive
cliques.

66 oo |

»
»

Cl C2 C3 C4 C5 C6 Cl C2 C3 C4 C5 C6

[Theorem 15] [Booth, Lueker 1976] For an interval graph G,
its PQ-tree can be constructed in linear time.

[Proof (Sketch)] They give incremental algorithm, which
has many case analysis with around 20 templates.

17/19

Algorithms on Interval Graphs

o Canonical Tree representation of an interval graph

[INote] Any interval graph G has a unigue PQ-tree, but a
PQ-tree can represent non-isomorphic interval graphs.

0 o oo

! ! ! ! ! |
R - I

C, C, C, C, C; C, ?

° 8 é 8 : C, C, C, C,

| ; C; Cs

»
»

C, G G G G5 G

18/19

Algorithms on Interval Graphs

o Canonical Tree representation of an interval graph

[Theorem 16] [Lueker, Booth 1979] (1) Any interval graph
G has a unique labeled PQ-tree, and vice versa.

I
——

0 o oo

»
»

c, C, C, C, C; C,

[Theorem 16] [Lueker, Booth 1979] (2) For any interval graph,
its labeled PQ-tree can be constructed in linear time.

[Corollary 3] The GI problem for interval graphs can be
solved in linear time.

19/19

