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e : = ] h r 6. Analysis on Polynomial-Tim
[ %6% S EXBAG EATREEDO | Chapter 6. Analysis on Polynomial-Time
Computability
6.1. ZIRXKEZET AR I -
6.1. Polynomial-time Reducibility
E&6.1:
ALBEREDEALT 5. Def.6.1: _
(1) B9% h: A>B: %18z RS:E 5T (polynomial-time reduction) Let A and B be arbitrary sets.
(O RE NI RN E S 35S (1) function h: A->B: polynomial-time reduction
| b)xeZ*[xe Ao h(x)eB] (a) h is a total function from Z* onto Z*
(©) h [ESEXERIGHE AT AE. S| (p)xeL*[xe A>h(x)eB]
(c) h is polynomial-time computable.
(2) ADBADZIERBHETAFET HEE, . o )
AlEB~ %18 = B R958 5T A 5 &L VS (polynomial time reducible). (2) When there is a polynomial-time reduction from A to B,
CDEE, ROELSIZE: we say A is polynomial-time reducible to B.
<P Then, we denote by
A<y B A<l B
s [ —— TR Ry s 7114 7/14
(6.2. ZITEABMBTAAEMEICED(ESY |

6.2.1. TEMDERETOERMMEE

EF6.2: TEBITRCIZHL, EEANRDEHEH-TLE,
FNELDTT)CREENS.

(@) YLeC[L <P A]

(b)AeC

WE EQ@ZER-TESITCRE.

16.5. 7S ANPDEEEA DB

3SAT, SAT, EXSAT, DHAM, KNAP, BIN, VC# &
ISREXPDREES

EVAL-IN-E, HALT-IN-EZz &

\ 6.2.Completeness based on Polynomial-time Reducibility

6.2.1. Definition of Completeness and its Basic Properties

Def.6.2: For a class C, if a set A satisfies the following conditions,
then it is called C-complete (under Sa)

(a) VLeC[L <7 Al

(b)AEC

Note : Sets satisfying the condition (a) are called C-hard.

Ex.6.5. Examples of A’P-complete sets

3SAT, SAT, EXSAT, DHAM, KNAP, BIN, VC, etc
EXP-complete sets

EVAL-IN-E, HALT-IN-E, etc.
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EH63 EENC-REES (B :CREEEAAITHL,
HAeP>CCSP sHEE C 2P > AeP
(2)AeNP>CES NP SHBIEZ CZNP > Ag NP

(B)A €co-NP > C S co-NP FH&IL CZco-NP > A€ co-NP
(A)ASEXP>CC ExP FHBIL CZEXP > AZEXP

BEBA :
(1) BEEEDCEELT DL, AlLC-BE AL,

B<h A —A, AcPORELY, Be P (EH6.1)
(), 3), B REIR
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Theorem 6.3. For any C-hard (or C-complete) set A,
(1)AeP>CES P CP: CaP > AgP
QAcNP>CE NP CP: CaNP > Ag NP
(B)Ac co-NP > C S co-NP CP: Cz co-NP > Ag co-NP
(4)AEEXP>C S EXP CP: CZEXP > AgEXP
Proof: CP: contraposition
(1) Let B be any C-set. Then, since A is C-hard,

B<P A and by the assumption A € P we have B € P (Th. 6.1)
(2), (3), (4) are similar.
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EI6.3. FEDC-RBEE (8:C-TLEEE)AITKL,
LAeP>CccP *HEIE C 2P > AeP
2)AeNP>CES NP SHBIX CENP > Ag NP
(B)A€co-NP > C S co-NP ® &L CZco-NP > A& co-NP
(A)AEEXP > CE EXP SHBIL CZEXP > AZEXP

B16.6. EE6.3DER (VT5ANP)
AENP-ZEEELTD.
EHE6IL)DR{BLY,

TEHES.0.
(1) NP € co-NP > NP =co-NP

NP#EP>Ag P
EHE6.3R)DRHBLEES.I(1)DxHELY,
A ¢ co-NP
DFEY, NP-ZLEEEP-NPTHDRY,
ZEXBRTIRERETEGL.

Theorem 6.3. For any C-hard (or C-complete) set A,
(1)AeP>CES P CP: CaP > AgP
2)AeNP>CE NP CP: CaNP > Ag NP

(3)Ac co-NP > C S co-NP CP: Cz co-NP > Ag co-NP
(A)ASEXP>C S EXP  CP: CZEXP > AgEXP
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Theorem 5.9.
(1) NP € co-NP > NP =co-NP

Ex.6.6: Meaning of Theorem 6.3 (class N'P)
Let A be A/P-complete set.
By the contraposition of Theorem 6.3(1) we have
NP£P>AEP

By the contraposition of Theorem 6.3(3) and that of Theorem 5.9(1),
A g co-NP

That is, N'P-complete sets are A’P-sets that cannot be recognized in

polynomial time unless P = N'P.
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NP-Z2ERIFIPENPTHARY, NP~ co-NPIZIFABLILY NP-compete sets are A’P-sets that do not belong to
NPEETHS. NP N co-NP unless P = NP.

NP co-NP
co-AP -complete
NP-complet
12/14 12/14
#16.7. FEIE6 IDEMK (IS5 REXP)

DEEXP-EEEELETD.

FEE6I(L)DRBE(C P > AgP, ZITIEEXP TP >D 2p)
P2EXP > EXPELP (P S EXP) > D &P
EIE6.3(2) D FHE (CINP > AENP,
CCTIFEXPZ NP SDDENP)
NP#EXP > EXPLZNP (“NP S EXP) > DENP
EH6.3(3) D XHE (C zco-NP > A€co-NP,
CCTILEXP Zco-NP >D €co-NP)
coO-NP# EXP > EXP Zco-NP >D¢g co-NP
LEIANEES TS poexp THAHMD, D EP.

EXP-EE KRB X SEARMTIIFERTRE.

EX. 6.7. Meaning of Theorem 6.3 (class EXP)
Let D be an EXP-complete set.

Contraposition of Theorem 6.3(1)
(CZP > A¢P, where EXP ZP D €P)
P#EXP > EXPLP (P S EXP) > Dep
Contraposition of Theorem 6.3(2) (CZNP > A gN'P,
Here, £EXP ¢ NP >D&NP)
NP#EXP > EXPe NP (“NP S EXP) > DENP
Contraposition of Theorem 6.3(3) (C€ co-NP > Agco-NP,
here, EXP Zco-NP D ¢ co-NP)
co-NP# EXP > EXPz co-NP >D g co-NP

But, by Theorem 5.7, since we know P & EXP, we have
D¢P.

EXP-complete sets are not computable in polynomial time.
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EBE6.4 A FEDC-ELES Theorem 6.4. A: any C-complete set
FTRTOEEBITHL, For any set B we have
(1) A <PB >BIdC-Hit. (1) A <, B >Biis C-hard.
(2)A<"B AB eC>BIXC-EZ. (2)A <"B AB eC-> Bis C-complete.
B3R Proof:
EE6.24Y, VLeClL <] Al By Def. 6.2 vLeC[L <! A]
EE6.2&Y, L AANALB LB By Theorem 6.2, L<; AAA</ B> L<; B
Lf=i>T, viec[L<’ B] Therefore, vLeC[L < B]
That is, B is C-hard.

JiEhn, BIEC-RE.

14/14 14/14

EXPC ={L: LIZEXP-52 2}
NPC ={L:LIINP-5E£}
EFHE ROTEHIKRYILD.
TEHE6.5.

(1) EXPC AP = ¢

(2) EXP— (EXPCUP) # ¢

EXP

EH6.6: P 2 NPEHETET HE
L) NPCOP = ¢
Q) NP = (NPCUP) #¢

/NPeN

% NPA~Cco-NP

NP

EXPC ={L: L is EXP-complete}
NPC ={L:Lis NP-complete}
Then, we have the following theorems.
Theorem 6.5.

Q) EXPC AP =¢

(2) EXP — (EXPC \P) #¢

EXP

Theorem 6.6: Assuming P = AP
Q) NPCAP = ¢
2 NP— (NPCYP) #¢

/NPeN

% NPA~Cco-NP

NP
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6.2.2. SEE DA

(NMNP)SE2 M DEEBAA %
() EHEBYIZ[TRTOL)ZDWVTEY
(1) T TIZHETHSENLM>TWSREEFIATS

(DI EI6.7, T H6.9(= CookD FEE(SATTTME L))

EXHIZIF...

> 1. BEARMTHURETOSSLEEZT
M—HR7E D THL 2. RIS LOEBEEGmERERX TERINT S
gL —ETHRE(FRNAHD)

3SATHE . 2K

(1) f51: 516.4(3SAT <& DHAM), E6.10, ...
DHAMIEZ—fED Y 57 L TNPES

DHAMILEE I S RELTENPTESE
DHAMIZITE S DX =3I REL TLNPES
DHAMIE2E8Y STIZIREL TENPREE...

6.2.2. Proof for completeness i

Two ways to prove (NP-)completeness
(1) show “for all L” according to definition
(1) use some known complete problems

Ex for (I) : Theorem 6.7,
Theorem 6.9(=Cook’s Theorem; simulate TM by SAT)

Basically...
1. For any program in standard form,
2. simulate it by SAT formulae
—pretty complicated and tedious

Easy to manipulate
since, e.g., 3SAT has a
uniform structure.

Ex for (I1): Example 6.4(3SATs<;, DHAM), Theorem 6.10, ...

DHAM is N’P-complete for general graphs

DHAM is A’P-complete even for planar graphs
DHAM is A’P-complete even for graphs with max degree=3
DHAM is N'P-complete even for bipartite graphs ...
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FHEG6.10: UTIZHITEERIETRTNP-EE
(1) 3SAT, SAT (EXSATMSDIETT)
(2) DHAM, VC (3BSATMSMETT)
(3) KNAP, BIN (3SATHMSM3ETTEKNAP <] BIN)

(1) NPEEHEAHA > TS EREN S0 2 IE X B ELET:
1. 3sAT<" vC
2. DHAM <! TE A D RHAE 252 HIBSH-DHAM

Vertex Cover: $RTODILD, LHEEL—ADNTEREZETESR

Hamiltonian cycle: TR THDTERE—E T DB HEK

HFIT: DHAMIER # & Z3THNPER,
B R2EEEZ B T ETEE,

2/11

Theorem 6.10 The following sets are all A/P-complete:
(1) 3SAT, SAT (reduction from ExSAT)
(2) DHAM, VC (reduction from 3SAT)
(3) KNAP, BIN (reduction from 3SAT and KNAPS:: BIN)

(I1) Polynomial time reductions from A/P-complete problems:

1. 3SAT<F vC
2. DHAM <! DHAM with vertices of degree <5

Vertex Cover: a vertex set that contains
at least one endpoint for each edge
Hamiltonian cycle: a cycle that visits each vertex exactly once

Note : DHAM remains N/P-complete even if max degree 3.
But it is polynomial time solvable if max degree 2.
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| E6.10(2) : VC (& NP EL I

[EEBA] VC € NP ED T, 3SAT<? VC THAHEERE XL,
BT F(X X, %) NMERONT=ET D,
FOBUTOERERT-TIST7EBRBDM<G, k>A°
ZIEARNETERTELLERT:

FZELZTRELUNEET 2CHY A ADTEABEEEZFD

GOEM(FIEnEHMIELT B):

1. FOEBZEH x (TRL. TBR X x & B x)EMAS

2. FOFEC=(, VI, VIITHUL TEA Iy, Iy, g £330,
(|i21|i3)v (|i3'|i1),e¢:7]uﬁ-é

3. BCODUTII Iy ¥ DEFIED(I, ") & —x DEEIFID
(%) MR %,
4. k=n+2m
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‘ Theorem 6.10(2) : VC is A’P-complete ‘

[Proof] Since VC € AP, we show 3SAT <, VC.

For given formula F(x;,X,,...,X,), we construct a pair <G,k>
of a graph and an integer in polynomial time.

There is an assignment that makes F()=1
&G has a vertex cover of size k

Construction of G (F has n variables and m clauses):

1. add vertices x;*,x; and the edge (x;*,x;") for each variable x; in F

2. For each clause Cj=(I; VI;, V1) in F, add vertices I, I, l;; and
three edges (liy,lip), (liz lia), (iain)

3. add the edge (l;;,x;*) if the literal I;; is x;, or add (I;;,x) if it is —x;
for each clause C;

4. letk =n+2m

FE1-T BEILARET BoCh YA XKD EAREEE> 1T

GO (FIInEHMIEALT B):

1. FOBER X ITRL.BR X & DX X)EMRS

2. FOFEC=(, VI, VIISHU, TEA Iy, Iy g £330,
(o). (heli)ZEMZ S

3. BCOUTIIL I, A x DEEXD(,x") F. —x DEXIE
B(lyx) #MNZ S,

4. k=n+2m

Bl F(Xp X X5 %) = (X, VX VXg) A (TX VX V) A (X V =%V X,)

There is an assignment that makes F()=1 4/11
©G has a vertex cover of size k

Construction of G (F has n variables and m clauses):

1. add vertices x;*,x; and the edge (x;*,x;)) for each variable x; in F

2. For each clause Cj=(I; VI, V1;3) in F, add vertices I;;, I, Ii; and
three edges (liy,lip), (i lig), (ia:lia)

3. add the edge (I;;,x;*) if the literal I;; is x;, or add (I;;,x;) if it is —x;
for each clause C;

4. letk=n+2m

EX: F(XXpXaXa) = (X VX VX A (7% VX3 VX) A (X, V %5 VX))
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GOERIE. 5EAbNT=F HD F DY A XIZxtd 5L IE X ERS
THEE , LEA>TUTZEREIELRLY

FZLUZT BB ANFET HCH YA XKDEREELHFD

g

GCOERMEBDTHREESIE

{xi",xi'd):‘f‘% ShEET
&oT S| Z n+2m =k TH S,

COIEST, BIE2OET

Bl F(XpXoXgXa) = (X VX VX A (™% VX VX) A (X V =XV X)

k=4+2x3=10
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It is easy to see that the construction of G from F can be done in

polynomial time of the size of F. Hence, we show that...
There is an assignment that makes F()=1
©G has a vertex cover of size k

Observation:
.
From the construction of G, { at least one of x c_)r Xi i
any vertex cover S should contain | at least 2 of 3 vertices in C

Hence we have [S| = n+2m =k.
EX: F(Xy X0 X3%,) = (X VX VX)) A (TX VX3 VX) A (X Y —%5 V X,)

k=4+2x3=10

FELST BB S MEET HoCHF A RO AREERD O
1 sk o pi) X=LED XFESISAND
LENTRDEI NI e wESIm AN
2. FNENDEC=(;ylple) FRBINTNDDT,
FIELIDDYUTIIL()IZDWTIXEHEDRBDID(,,,x,)
IE x;; ISR THEBSIN TS, LIzh T TSN D
ZODYFIN(,l)E S IZAND,

= BB LY. SIEY A XKDTERBEITED,
DO F(XXoXaXa) = (X VX VX)) A (X VX VX A (X V X5 V Xy)

k=4+2x3=10

If there is an assignment that makes F()=1, 6/11

G has a vertex cover of size k
1. Put{ X" if %=1 } into S for each x;.
X" if x,=0
2. Since each clause Cj=(l;y,lip,l;3) is satisfied, at least one literal,
say |;;, the edge (I;,,x;;) is covered by the variable x;;. Therefore,
put the remaining literals (l;,,1;3) into S.

= From the| Observation, | S is a vertex cover of size k.

EX: F(XX0Xg.Xg) = (X1 VX0 VX)) A (T VX5 VX)) A (X V %5V X,)

k=4+2x3=10

COHARKD B A EEH = FELCT BBIUAEETS L
1 [BE LY. ESITESS2miE. TRASMEOTEAE S,
2 XBI& T IZ DN T DX D—FH LA
BRGSOV TFBLIE2DDTERALMSICEL TEMNTELRL,
3. Lo TRIECESIZEFENENITIILIEET A,
RIS BRI BB SN TOEITREESAEL,
X SIS ENBED x=1 ) 1y =
= e | LV SHARFERRT 5,
Vx)A XY 7%V x,)

Bl F(Xq X0 XgXs) = (X1 VX VX)) A (73X, VX

k=4+2x3=10

QED.

If G has a vertex cover of size k, there is an assignment s.t. F()=1  7/11

1. From|Observation,| a cover S contains 2m vertices
from the clauses, and n vertices from the variables.

2. Thus the cover S contains exactly one of x;* and x;” and
exactly two literals of a clause C;.
3. Hence each clause C; contains exactly one literal I; which is notin S,
and hence incident edge should be covered by a variable vertex.
= The following assignment satisfies F: X=1ifx"in S }

x=0ifxinS
EX: F(XX0Xg.Xg) = (X1 VX0 VX)) A (T VX5 VX)) A (X V %5V X,)

k=4+2x3=10

QED.
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FE R TELLML:

F(X1.X0Xg) = (X, VX, VXD A (X Y 7%,V %) A (%, VX5 V Xg)
AT VX,V —ixg)

FERTELLFTIE, EQOVTIIILBERTH A= TLVEL
ENLTEET D, COEDYTZILIE3DED Vertex Cover 12
ANEDEBEL, &2 T Vertex Cover DH 4 X1 k+1LA EI1Z42 5,
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Unsatisfiable example:

F(X1X0Xg) = (X1 VX, VXD A (X Y 7%,V %) A (%, VX3 V Xg)
AT VX,V —ixg)

When F is unsatisfiable, it contains at least one clause such that each
literal is not covered by a vertex. So, Vertex Cover should

contain three literals in the clause. Hence any vertex cover has size
at least k+1.
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(EE REBEARSOERY 57 L0 DHAM [E NP T2

[FEBA] (LEEDREIEZDHAM LBEEE T ) ¥ TEAIS
DHAM _; BNPIZBE 50 1%, DHAMA APz | BT BADA

B3 HiembBaH, Lizh>TREEMZEREIELL,
DHAMS<; DHAM (&R,

FATT:
RELADTERV(E)D
(A-TKBBLEE)E
(HTLDEES) AR
D gadget’ TEEHZ S

ERTVEIERLTES
FBEaRTVELESR
(TR HEABIEHIE S D,
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Theorem: DHAM on a directed graph with max. degree=5
(abb. DHAM <;) is A/P-complete degree: the number
[Proof] of edges incident to

Since DHAM € NP, DHAM; ENP. (@ Vertex
We DHAM<] DHAM .

Idea:

Replace the set of “arcs to v”
and the set of “arcs from v”
by a right ‘gadget’.

A Hamiltonian cycle through v
on the original graph
corresponds to the
Hamiltonian cycle through v
on the resultant graph.

(EE REBEARSOERY 57 LD DHAM [E NP T2 1011

TATT:

- ZEABE EAST

=& O(log d)
 BEEAFRES5

B 0(d)

[REBAGBEE)]

B2oN=057GHREALULEDEFNEFNDIEEICADIDE
H%iD% LD gadget TEEIRZ S,

1. TOYZI7GHnERMB THoI-45. gadget TEEMA 1=
HEDTSTG1E O(n+m)IER O(M)iBEAHD, LI-h>TE
HOETIECHORESD ZIER BRI TAEE,

2. FECDITRTODERIETRYEIEINENSTHD,

3. GANIVIUBABEL DG HNILUBIBERD oep,

Theorem: DHAM on a directed graph with max. degree=5 10711

(abb. DHAM ;) is N'P-complete

Idea:

Points:
* Up to down via cycle
« Each vertex has deg=5

height: O(log d;)
number: O(d;)

[Proof (sketch)]
For each vertex v of degree 26, replace the edges around v
by the gadget.
1. If the original graph G has n vertices with m edges, the
resultant graph G’ contains O(n+m) vertices with O(m) edges.
Hence the reduction can be done in polynomial time of n & m.
2. Each vertex in G’ has degree at most 5.
3. G has a Hamiltonian cycle < G’ has a Hamiltonian cycle. QED.
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