FZITIYX LR

Theory of Algorithms

E SR
BHT7ILTIVX L

1/40

FILTYX LR

Theory of Algorithms

Lecture #5
Greedy Algorithm

2140

RPEGTV—T1—&)
REILEEERCEEICHGRA TFIE
BRRTEANAILEERT, RROLOEEHER.

FiREP1L: (EE D TIRME)
BEOEHFEF50ME, 10ME, 5SAE, IAELTS.
NEDEE TREMNR/NMNIAEESITNAZERRET HIZIE
EDFSITHEEZERIE LD

FILTY X LP11-A0:
BREIIEEACTRAMNICREDERET .
FT, RLAZVVEE THD50AETTESLLE ALY,
BHYZERICKEVIOAETHL, SHIZZFDEYE
SAETHS. FERUAHNIE, REICIAETHS.
Bl:n=127DB4E.
50 2#2(100M), 10M24%(120M), 514k (125M), ngo

Greedy Algorithms
a group of algorithms effective for solving optimization problems.

at each iteration, make a locally best selection without considering
its global effect

Problem P11: (Coin Exchange problem)
Suppose we have coins of 50 yen, 10 yen, 5 yen and 1 yen.

How should we choose a minimum number of coins to exchange
n yens?

Algorithm P11-A0:
A greedy algorithm makes locally optimal selection at each iteration.
First, we pay by as many 50-yen coins, largest coins, and then
pay by 10-yen coins the next largest ones, and further by 5-yen

coins. If there still remains any, we pay by 1-yen coins.

Example:the case of n = 127

50-yen coins x 2(100yen), 10-yen x 2(120 yen),
5-yen x 1(125yen), 1-yen x 2 4040

BEROZMRERE
S0MBER D #%E M50,
10MER DM EE M10,

SAER DM EE M5,
1MBEE O EHE M1

ETNIE, nANEZLNT-LE, REEOHREKI
M50 =n/50; n = n mod 50;
M10 =n/10; n =n mod 10;
M5 =n/5; n=nmod5;
M1 =n;

ELTKRFES.

EERIE:
LROFETEICR/NBOBEEAKRESCLZAAE £

EE
BAEELEADLEEITHL LD A ETRERNREDN ?

5/40

Coin Exchange Problem
Let the number of 50-yen coins be M50,
Let the number of 10-yen coins be M10,
Let the number of 5-yen coins be M5,
Let the number of 1-yen coins be M1.
Then, give n yen, the numbers of coins are given by
M50 = n/50; n = n mod 50;
M10 =n/10; n =n mod 10;
M5 =n/5; n=nmod?5;
M1 =n;

Exercise: Prove that the above algorithm always finds a smallest
number of coins.

Exercise: Does the above algorithm work when 30-yen coins

are available as well? 6140

MEPL2:(B/M B ARE)
BIZEHMF N (B TIN5 ZoNTLE, 2TORE
EURKEER) OGN TILDOEADHLNRNELEDLDER
DIt k.

O
BRONEHDETST BRARGEEAR

7140

Problem P12:(Minimum Spanning Tree Problem)

Given an undirected graph with weighted edges, find a tree
containing all the vertices (spanning tree) with the smallest total
edge weight.

O

given weighted graph various spanning trees

8/40

RREP12:(R/IME B AR RR)
BIZEAMMFNZ(ER) T ITNEAON-LE, 2TORE
BEUKR(ZER) QUM TLOEADNNENELDLNDER
2T L.

EHTEEREEMI ST G(VEC)
V:IERDES, E(EM)ZOES, c(e)iBeDEH>0.

7L X LP12-A0:(Kruskal D7)L X L)

T=%%£45;

while(EIZZETHLY){
EQh Mo EAR/NDTeEEY, EMNbeZRYERL;
TIZWeEMZ TTEZT ST AVINEEFTHTNIL,
TIZe%EMZ 5;

3
DEETISE TEFEI 7 (R ERNEFARELTH A,

9/40

Problem P12:(MST: Minimum Spanning Tree Problem)
Given an undirected graph with weighted edges, find a tree
containing all the vertices (spanning tree) with the smallest total

edge weight.

undirected connected graph with edge weights G(V,E,c)
V: set of vertices, E: set of (undirected) edges,
c(e): weight of an edge e >0.

Algorithm P12-A0:(Kruskal’s algorithm)

T = empty set;

while(E is not empty){
Choose an edge e of smallest weight, and remove it from E;
Add the edge e to T if the graph obtained by adding e to T does
not contain any cycle;

}

Output the graph (tree) determined by the edge set T as MST; 1q40

3) 11/40

©)

&
@ ®

DI
©

@
©,

@X

%) @ 3

1p/40

inimum
Spanning
(6) @) Tree 1o

FILTY X LP12-A0: (Kruskal D7 LT X L)

T=%%£5;

while(EIZZE TR
EQHMLEAR/INDTeEREY, EHDeFTURL
TIZBeZEMATTERZ T STDB YAV EEELZITIIL,
TIZeEMZ5;

}
BEATICELTEFDII7 (RN ERNMEFARELTH ;

FILTYRXLPL2-A0Z &> TRED T STEMT R THS.
BEH: AN ELHENKSISDEMZ TS HD.

COESBERLBAETRBELGERNRETNDESLIM?
=S>FILNTYXLOELESOREE

EEME A2 EDY5TI12DL TKruskald 7)LTY
ALOBEETE.

15/40

Algorithm P12-A0: (Kruskal’s algorithm)

T = empty set;

while(E is not empty){
Choose an edge e of smallest weight, and remove it from E;
Add the edge e to T if the graph obtained by adding e to T does
not contain any cycle;

}

Output the graph (tree) determined by the edge set T as MST;

The graph obtained by Algorithm P12-A0 is always a tree.
Why? Edges are added not to generate any cycle.

Does this greedy algorithm find an optimal tree?
=>Verification of the correctness of the algorithm

Exercise: Show behavior of the Kruskal’s algorithm for a graph
with more than 11 vertices.

16/40

FLTYAXLDIELE

DOAKIZBI S HIRMAE
FILTVZXLTREDTHKED DA LD EE,
[TIZKADDH % BHCDES T F7T, EHR/IDK
IZ> TS (FAREEFERLN)]

k=10 &E, EATIDIDEEATNDM G, BAGMNITHEIL.

KETHYIDELT, k+t1DEZEERD.

T kKERQDALHELHABEEELZVCORHISTT
EHRINIDHD
e: TITAH ML CTLEAREELAVDORTEAR/IDID
T’ [2BeZx AT BE+HIADAMNSLDER T 575155
FBEEFAVESITDEREA TS
EHLRNINTHD
CEDDLMDIDTEEMNADE,
FBRZELLDD, LOEANEMT S.

17/40

Correctness of Algorithm

Induction on the number of edges
When a tree T obtained by the algorithm has k edges,
“T is a subgraph of G consisting of k edges which is a tree
of minimum weight (without any cycle)”
For k=1 it holds since it contains the edge of the minimum weight.
Assuming that it holds for 1, ..., k, consider the case for k+1.
T’: anacyclic subgraph of G containing k edges that has the
smallest weight
e: an edge of smallest weight such that its addition to T’
causes no cycle.
Adding the edge e to T’, we have a subgraph with k+1 edges.
The edge is selected so that no cycle is generated.
Its weight is minimum.
*."Replacing any edge with some other edge, some cycle

is generated or the edge weight increases. a0

EEDEIN =]

1. BEEHOFRIEICERYE T
BRUICTRTODEEHDRIBIZY—RLTHIFIEEKL.
2. DEAAMUI-EZFAREELHINESHDHIE
A, VERIMT BT EICTERUEVAB T S ERER D EHE
SubvhBEICEICEHS RS ICEBLTONIERREELS
Tk, EQXIITERRNZEET HH?
Sunion-find kDT —2#E

EROERRDZEROH TER

union(u, v)#2 4 find(u)#&4E
VEBDREVEESTRE UVE BT ADIREEZD
12I#HE T S.
MR E
BIERUZDOWT, uEE—DTERET DARIRITU)TRT.
19/

40

Implementation of Algorithm

1. Take edges in the increasing order of their weights.
It suffices to sort all edges in the order of weights.

2. Determine whether addition of a new edge causes a cycle.
Whenever we add an edge (u, v), we merge the connected
components of u and w into one.

- I1f uand v belong to the same component then a cycle arises.
Then, how can we maintain connected components?
-union-find tree data structure

Connected components of vertices are maintained in a tree.

union(u, v) operation
Merge the tree containing u
with that containing v.

find(u) operation
answer the root of a tree
containing u

Initialization
For each vertex u, we have a tree with u as its only vertex. | 2040

MR
ZTEAUZDONT, uEH—DTEAEETERARIFU TR .
6006 o BEEFTSTHZA
u
union(u, v)#{E find(u)#24E
UVEEDREVEEDRE VEEOARDIREEZZS
12IS#E T 5.
r
VEBLRD f
uf oo evean “?QO\’ g I
Vo koiR%D L _
Z T UMBARDIBEIRIZ
ra BFTTUY, REEZ .

STEERMOBITIEZ LN, TBERfZEn,
DPEEMET SE, O(ma(n)BERIZTES. 20

b

Initialization
For each vertex u, represent by u the tree with u as a unique vertex.

©00go0 o Initially, all the vertices are isolated

find(u) operation
answer the root of a tree
containing u

union(u, v) operation
Merge the tree containing u
with that containing v.

r
Connect the root of
\
u oo the tree containing L? © o
\
£

u with the root fJf Following the tree edges
the tree containing v from u toward the root,

return the root.
Z%O Analysis of computation time is not easy, but it is
u v shown to be O(ma.(n)) with n vertices and m edges.

Prim@ 7T L ‘

FARZELEMNEINEHET DD TGS, ABALELAEN
FSITWEHEOLTLKEE.

RTE1DDIEREZTNLLEDEDMOIEHT, TOTRRETD
NOTERERESLDHPTEAR/NDLDERD, TITIAS.

ole Ol eleote 1.2
I I I 4 I I
O 0 OO0 O O IOO

23/40

Prim’s Algorithm

It is an algorithm that does not check but adding edges so that no
cycle is generated. Starting T from a tree containing only one
vertex, we find an edge of smallest weight connecting vertices of
T with those outside T and add itto T.

ete O| oleote

24140

FILTYZXLPLI2-AL:(PrimDFILTY X L)
TEZEESE,
EEDEREEY, B={u}&MEL;
IIBIFEEN-THRDES. TN TOERATENEET
while(V-BMZETHLV{

V-BIZE T ATERUEBIZE T ATHRVEFESL(UV)DHFT

EANRDMDEDEES,
PFEY, BIEN AR SEIEN TLVEWIESZEHE ST

TIZB(uv) &R 5;

BICTERUZENA%;

}
DEETIZE2TEFERY 7R ERNEHARELTH A,

25/40

Algorithm P12-Al:(Prim’s algorithm)
Let T be an empty set;
Choose any vertex u and initialize B as B={u};
/I B is a set of selected vertices. Stop when all vertices are selected.
while(V-B is not empty){
Choose an edge (u, v) of smallest weight connecting a vertex u in
V-B and a vertex v in B;
/li.e., an edge between selected vertices and unselected vertices
Add the edge (u, v) into T;
Add the vertex u to B;
}
Output the graph (tree) determined by the set T of edges as a minimum
spanning tree;

26/40

BEICL->TRITARBILMBORE DT

1. EARR ¥ (greedy-choice property)
BB RBRMICRELHERYBRLESILTHELOND
EWSHEHE.

2. BoBEOREM
RERNS BT SEBEREETEVNSEE

0-1FvF Yy oMBEE—RIL v T oy IORE

AB B0 RPOMELATE SLUVFvTHvINBTEC

HA:Fy Ty I IRA AR S Y D ME D LI DR KB

o 0-1FYTHVIRBETIEIDDRMENEITHILETET,
FYTHIIICANDINESHERDIFFNITIEDELN.

o =Ly T BV BT, 12D SYEERICHEIATEE.
EELDEBEAELLIN?

27140

Principle of Greedy Algorithms

Characterizing optimization problems solved by greedy algorithms
1. Greedy-choice property
A property that an optimal solution is obtained by successive
selection of locally optimal solutions.
2. Optimal Substructure
A property that an optimal solution includes an optimal
solution to a subproblem.

0-1 Knapsack Problem and Generalized Knapsack Problem
Input: values and volume of n items, and capacity C of knapsack.
Output: Maximum sum of values of items that be put into knapsack.
Any item cannot be decomposed in the 0-1 knapsack problem.

If we choose an item, we have to put the whole item into knapsack.
In the generalized knapsack problem, we can decompose any item
into pieces. Which problem is harder?

28/40

1 &¥11=(60,000/, 10m3), & ¥12=(100,000H, 20m?),
&413=(120,000, 30m?), Z5EC=50 m?

B AEHYDMIEERDDLE,
1 = 6000, FH12=5000, & #13=4000
0-1FyTHvHMBE T
@1, RY20IEICERSE, RYMBIEBREDOBFETENLLY
Mo, EfED#F0E£160,000M1Z7%45.
@1, RMSDIEIZESL, MiEDAETE180,000M,
mH2L3FMB L, MEDAETE220,000MEHE>TRAK.
RFRRGHEELIHHOT, HLVOERETH S (NPTELERERE)
— ey TV ORBE TR
(B HESYDMEDSVEIS, 21, &RP20IEIZERY,
BRYDEETRMIEMS L, EEOHRIIE
60,000+100,000+120,000*20/30=240,000
LY, RRDOEELES.
2FY, BENETRERNKRES. 20/40

Example: Item1=(60,000yen, 10m3), ltem2=(100,000yen, 20m3),
I1tem3=(120,000yen, 30m?3), Capacity C=50 m3

Calculating the values per unit volume,
Item1 = 6000, ltem2=5000, Item3=4000
0-1 Knapsack Problem
+Choosing Item1 and Item2 in order, we cannot take Item3 due to
capacity constraint. So, the total value becomes 160,000 yen.
+ Choosing Item1 and Item3 in order, the total value is 180,000 yen,
and choosing Item2 and Item3 then it is 220,000 yen, which is highest.
- Since there are so many combinations, it is a hard problem.
NP complete problem.
Generalized Knapsack Problem
- Taking the items in the decreasing order of their values, i.e.,
Items1 and Items, and taking ltem3 for the remaining capacity.
Then, the total value amounts to
60,000+100,000+120,000*20/30=240,000 yen,
that is the highest value. That is, the greedy algorithm can find an optimal
solution. 30140

—RieFyT BB EE

BAEEOREN
-REBANHA BT ARERESL LR
-BAICBEuAEL-YDEENZRRKTHIREMIE
£E(10m3) EITERS. ZOIMDRE”MDED ZHT
BERATHMEETNEHSE, COBERIIRETHDS.
DFEY, BYDIOMZERY2LRMIFEITTHEDHZENS
o EEORBREIC, M1 DIOMDREMZ NI
ERDORBERHNRED.

RIREP13:(— b v TSy I RE)

nfEDSYOMEEHFIE, BLEFVTHVIDBTECHAER
Shif-&E, TyT Yy ICRE R R RO EEDKTINE
RAISTBICE, ThERDOEMETNTNENEHENE
ELyin?

31/40

Property of the Generalized Knapsack Problem
Optimal Substructure
- Property that an optimal solution contains an optimal solution to
a subproblem.
- First, we take the whole of the Item1 (10m3) of the highest
value per unit volume. Exchanging this 10m3 with any other item
decreases the total value, and so this selection is optimal.
That is, the globally optimal solution is obtained by filling the
remaining 40m?3 with Item2 and Item3 together with 10m? filled
by Item1.

Problem P13:(Generalized Knapsack Problem)

Given values and volume of n items and the capacity C of knapsack,
how much of each item should we choose so that the total value of
items to be put into knapsack is maximized? a2

7= X LP13-A0: (B #E)
nNME D SO EEEARTEE (Vo, Wy), - (Vg W) ET .
FTYTHVIDEEECLT S,
RN, TRNETAOSYOBLAEH-YDEEY/wWEKRDS.
nED @EEBLAEH-YDMEDREIEIZY—~ 5.
VolWo 2V, 2=+ 2V, I, ET 5.

LOV—HEIZESTRBES VT HIIICANRTINK

=120, TvTHvIDBRECERBTLIE, BEAEHIBRLT

#Y.
i=0; sum=0;
while(i<n && sum+w; =C){
do{

EMiEFTYTHVIICAND,; i=i+l; sum=sum+w;;

}

BRICEDiEC-sumDEFAND;

ETEREREIZO(n log n) <=V —FLEE(ZO(n log n)HE 33/40

Algorithm P13-A0: (Greedy Algorithm)

Let values and volume of n items be (vq, W), ... (Vy.1, Wpp)-

Let C be the capacity of knapsack.

First, find unit value v;/w; of each item per unit volume.

Then, sort n items in the decreasing order of their unit values.

Assume that vo/wy Zv,/wy 2 === 2V, /w,

According to the sorted sequence above we put items into knapsack.
When the total volume exceeds the capacity C of knapsack, then
we stop after removing the excessive portion.

i=0; sum=0;

while(i<n && sum+w; =C){

do{

Put the item i into knapsack; i=i+1; sum=sum-+w;;

}

Finally, put the item i by C-sum;

Computation time is O(n log n) <=O(n log n) is required for sortingso

RAIREPL4: (RIS PERIRE)
NHEESERENEADZTISTIOHBTEALNTINS LS,
FEIC2HHMEHRARERE (EHR/NDORB ERO L.

Problem P14: (Shortest Path Problem)

Given a road network connecting n cities as a weighted graph, find a
shortest path (of minimum weight) between arbitrarily specified two
cities.

36/40

[F49RFSDFLTUXL]

IR RSB RIFETORERIEZ T TS, shHoDETO

BERANORERZRERDD.
D[V]: sh o JERVETORERBEORS
ELT, TRTOIEAICDOVTD[DEERDS.

BEHER:
F=ZoIES
D[s]=0
D[v]=00 (Vv#S)
ELTHRS, BRIDV]IDENR/INDIERE
BAT, TOEZEEL-%, THRVICBETSEAAD
DERART, BEEA~NOSIYVEVRERERNS.

37/40

Dijkstra’s Algorithm

Find a shortest path from a starting vertex s to every other vertex

in addition to a shortest one from s to a terminating vertex t.
D[v]: length of a shortest path from s to a vertex v.
We want to calculate the values D[] for all the vertices.

Greedy choice:
Initially we have
D[s]=0
D[v]=0c0 (v#s).
Every time we choose a vertex v
to minimize the value D[v] and determine the value D[v].
Then, we examine its adjacent edges to find shorter paths
to its adjacent vertices.

38/40

FILT) X LP14-A0: (B4 IR NSiK)

C=sUN DI RTOTERANSELES;

for ¥ XTDHTERV do D[v] = o;

D[s] =0;

u=s;

do{
for TERUICEEET 2T R TOIERY do

if D[u]+w(u,v) < D[v] then D[v] = D[u]+w(u,v);

COFTD|DENR/PDIEREEYS, ukd .
ChouzHIBRY 5.

} while(CHAZETAELY);

SEHEME A MIANSOTILTY X LOFHERRIZDNT
thDTFFREREE L.

39/40

Algorithm P14-A0: (Dijkstra’s Algorithm)
C= a set of vertices except s;
for each vertex v do D[v] = oo;
D[s] =0;
u=s;
do{
for each vertex v adjacent to vertex u do
if D[u]+w(u,v) < D[v] then D[v] = D[u]+w(u,v);
Choose a vertex u to minimize D[] among C;
Remove u from C;
} while(C is not empty);

Exercise: Examine textbooks for the computation time of the
Dijkstra’s algorithm.

40/40

