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Lecture #5
Greedy Algorithm
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Greedy Algorithms
a group of algorithms effective for solving optimization problems.

at each iteration, make a locally best selection without considering
its global effect

Problem P11: (Coin Exchange problem)
Suppose we have coins of 50 yen, 10 yen, 5 yen and 1 yen.

How should we choose a minimum number of coins to exchange
n yens?

Algorithm P11-A0:
A greedy algorithm makes locally optimal selection at each iteration.
First, we pay by as many 50-yen coins, largest coins, and then
pay by 10-yen coins the next largest ones, and further by 5-yen

coins. If there still remains any, we pay by 1-yen coins.

Example:the case of n = 127

50-yen coins x 2(100yen), 10-yen x 2(120 yen),
5-yen x 1(125yen), 1-yen x 2 4040
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Coin Exchange Problem
Let the number of 50-yen coins be M50,
Let the number of 10-yen coins be M10,
Let the number of 5-yen coins be M5,
Let the number of 1-yen coins be M1.
Then, give n yen, the numbers of coins are given by
M50 = n/50; n = n mod 50;
M10 =n/10; n =n mod 10;
M5 =n/5; n=nmod?5;
M1 =n;

Exercise: Prove that the above algorithm always finds a smallest
number of coins.

Exercise: Does the above algorithm work when 30-yen coins

are available as well? 6140
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Problem P12:(Minimum Spanning Tree Problem)

Given an undirected graph with weighted edges, find a tree
containing all the vertices (spanning tree) with the smallest total
edge weight.

O

given weighted graph various spanning trees
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Problem P12:(MST: Minimum Spanning Tree Problem)
Given an undirected graph with weighted edges, find a tree
containing all the vertices (spanning tree) with the smallest total

edge weight.

undirected connected graph with edge weights G(V,E,c)
V: set of vertices, E: set of (undirected) edges,
c(e): weight of an edge e >0.

Algorithm P12-A0:(Kruskal’s algorithm)

T = empty set;

while(E is not empty){
Choose an edge e of smallest weight, and remove it from E;
Add the edge e to T if the graph obtained by adding e to T does
not contain any cycle;

}

Output the graph (tree) determined by the edge set T as MST;  1q40
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Algorithm P12-A0: (Kruskal’s algorithm)

T = empty set;

while(E is not empty){
Choose an edge e of smallest weight, and remove it from E;
Add the edge e to T if the graph obtained by adding e to T does
not contain any cycle;

}

Output the graph (tree) determined by the edge set T as MST;

The graph obtained by Algorithm P12-A0 is always a tree.
Why? Edges are added not to generate any cycle.

Does this greedy algorithm find an optimal tree?
=>Verification of the correctness of the algorithm

Exercise: Show behavior of the Kruskal’s algorithm for a graph
with more than 11 vertices.
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Correctness of Algorithm

Induction on the number of edges
When a tree T obtained by the algorithm has k edges,
“T is a subgraph of G consisting of k edges which is a tree
of minimum weight (without any cycle)”
For k=1 it holds since it contains the edge of the minimum weight.
Assuming that it holds for 1, ..., k, consider the case for k+1.
T’: anacyclic subgraph of G containing k edges that has the
smallest weight
e: an edge of smallest weight such that its addition to T’
causes no cycle.
Adding the edge e to T’, we have a subgraph with k+1 edges.
The edge is selected so that no cycle is generated.
Its weight is minimum.
*."Replacing any edge with some other edge, some cycle

is generated or the edge weight increases. a0
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Implementation of Algorithm

1. Take edges in the increasing order of their weights.
It suffices to sort all edges in the order of weights.

2. Determine whether addition of a new edge causes a cycle.
Whenever we add an edge (u, v), we merge the connected
components of u and w into one.

- I1f uand v belong to the same component then a cycle arises.
Then, how can we maintain connected components?
-union-find tree data structure

Connected components of vertices are maintained in a tree.

union(u, v) operation
Merge the tree containing u
with that containing v.

find(u) operation
answer the root of a tree
containing u

Initialization
For each vertex u, we have a tree with u as its only vertex. | 2040
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Initialization
For each vertex u, represent by u the tree with u as a unique vertex.

©00go0 o Initially, all the vertices are isolated

find(u) operation
answer the root of a tree
containing u

union(u, v) operation
Merge the tree containing u
with that containing v.

r
Connect the root of
\
u oo the tree containing L? © o
\
£

u with the root fJf Following the tree edges
the tree containing v from u toward the root,

return the root.
Z%O Analysis of computation time is not easy, but it is
u v shown to be O(ma.(n)) with n vertices and m edges.
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Prim’s Algorithm

It is an algorithm that does not check but adding edges so that no
cycle is generated. Starting T from a tree containing only one
vertex, we find an edge of smallest weight connecting vertices of
T with those outside T and add itto T.
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Algorithm P12-Al:(Prim’s algorithm)
Let T be an empty set;
Choose any vertex u and initialize B as B={u};
/I B is a set of selected vertices. Stop when all vertices are selected.
while(V-B is not empty){
Choose an edge (u, v) of smallest weight connecting a vertex u in
V-B and a vertex v in B;
/li.e., an edge between selected vertices and unselected vertices
Add the edge (u, v) into T;
Add the vertex u to B;
}
Output the graph (tree) determined by the set T of edges as a minimum
spanning tree;
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Principle of Greedy Algorithms

Characterizing optimization problems solved by greedy algorithms
1. Greedy-choice property
A property that an optimal solution is obtained by successive
selection of locally optimal solutions.
2. Optimal Substructure
A property that an optimal solution includes an optimal
solution to a subproblem.

0-1 Knapsack Problem and Generalized Knapsack Problem
Input: values and volume of n items, and capacity C of knapsack.
Output: Maximum sum of values of items that be put into knapsack.
Any item cannot be decomposed in the 0-1 knapsack problem.

If we choose an item, we have to put the whole item into knapsack.
In the generalized knapsack problem, we can decompose any item
into pieces. Which problem is harder?
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Example: Item1=(60,000yen, 10m3), ltem2=(100,000yen, 20m3),
I1tem3=(120,000yen, 30m?3), Capacity C=50 m3

Calculating the values per unit volume,
Item1 = 6000, ltem2=5000, Item3=4000
0-1 Knapsack Problem
+Choosing Item1 and Item2 in order, we cannot take Item3 due to
capacity constraint. So, the total value becomes 160,000 yen.
+ Choosing Item1 and Item3 in order, the total value is 180,000 yen,
and choosing Item2 and Item3 then it is 220,000 yen, which is highest.
- Since there are so many combinations, it is a hard problem.
NP complete problem.
Generalized Knapsack Problem
- Taking the items in the decreasing order of their values, i.e.,
Items1 and Items, and taking ltem3 for the remaining capacity.
Then, the total value amounts to
60,000+100,000+120,000*20/30=240,000 yen,
that is the highest value. That is, the greedy algorithm can find an optimal
solution. 30140
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Property of the Generalized Knapsack Problem
Optimal Substructure
- Property that an optimal solution contains an optimal solution to
a subproblem.
- First, we take the whole of the Item1 (10m3) of the highest
value per unit volume. Exchanging this 10m3 with any other item
decreases the total value, and so this selection is optimal.
That is, the globally optimal solution is obtained by filling the
remaining 40m?3 with Item2 and Item3 together with 10m? filled
by Item1.

Problem P13:(Generalized Knapsack Problem)

Given values and volume of n items and the capacity C of knapsack,
how much of each item should we choose so that the total value of
items to be put into knapsack is maximized? a2
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Algorithm P13-A0: (Greedy Algorithm)

Let values and volume of n items be (vq, W), ... (Vy.1, Wpp)-

Let C be the capacity of knapsack.

First, find unit value v;/w; of each item per unit volume.

Then, sort n items in the decreasing order of their unit values.

Assume that vo/wy Zv,/wy 2 === 2V, /w,

According to the sorted sequence above we put items into knapsack.
When the total volume exceeds the capacity C of knapsack, then
we stop after removing the excessive portion.

i=0; sum=0;

while(i<n && sum+w; =C){

do{

Put the item i into knapsack; i=i+1; sum=sum-+w;;

}

Finally, put the item i by C-sum;

Computation time is O(n log n) <=O(n log n) is required for sortingso
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Problem P14: (Shortest Path Problem)

Given a road network connecting n cities as a weighted graph, find a
shortest path (of minimum weight) between arbitrarily specified two
cities.
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Dijkstra’s Algorithm

Find a shortest path from a starting vertex s to every other vertex

in addition to a shortest one from s to a terminating vertex t.
D[v]: length of a shortest path from s to a vertex v.
We want to calculate the values D[] for all the vertices.

Greedy choice:
Initially we have
D[s]=0
D[v]=0c0 (v#s).
Every time we choose a vertex v
to minimize the value D[v] and determine the value D[v].
Then, we examine its adjacent edges to find shorter paths
to its adjacent vertices.
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Algorithm P14-A0: (Dijkstra’s Algorithm)
C= a set of vertices except s;
for each vertex v do D[v] = oo;
D[s] =0;
u=s;
do{
for each vertex v adjacent to vertex u do
if D[u]+w(u,v) < D[v] then D[v] = D[u]+w(u,v);
Choose a vertex u to minimize D[] among C;
Remove u from C;
} while(C is not empty);

Exercise: Examine textbooks for the computation time of the
Dijkstra’s algorithm.
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