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BREROBKEMAREONBERITTESETHE, #HEX
T(n) =T(rn) + cn

= 155.

ZOFMERITRD K28R (15D, 1=12L, rin=1&L, T(1)=d¢t9 5.
T(n) =T(rn) + cn =T(r2n) + crn + cn =T(r3n) +cr2n+ crn + cn
=T(rkn) +cr&In+ == =+cr2n+ crn + cn =d +cn/(1-r).
&oT, T(n) =0(n)&7sY, MIEFRRTHAHIZENHLMD.
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Principle of Prune-and-Search

Solve a given problem by removing as many redundant elements
as possible by examining every element and solving the reduced
problem recursively.

T(n): time to solve a problem of size n.
Assume that examination of every element of a problem of size n
reduces the problem size into rn (r<1).
If we can examine all the elements in cn time, then we have the
recurrence equation

T(n) =T(rn) + cn.

The equation can be solved as follows: Here assume that rkn=1 and

T(1)=d, a constant. Then, we have

T(n) =T(rn) + cn =T(r2n) + crn + cn =T(rn) +cr2n+ crn + cn
=T(rkn) +crkIn+ == =+cr2n+ crn + cn =d +cn/(1-r).

Thus, we have T(n) = O(n), I1.e., it runs in linear time. 4/42
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Theorem: If we can reduce the problem size at some constant
rate r for any problem instance, this problem can be solved in
linear time based on a Prune-and-Search algorithm.

If it takes O(n log n) time to examine all the elements instead of
O(n) time, then the recurrence equation becomes
T(n) =T(rn) +cn log n.
A solution to this equation is
T(n) =d+ cn log n/(1-r),
which implies that the problem is solved in O(n log n) time.

Exercise: What about the running time if it takes O(n?) time to
Investigate all the elements?
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Problems solved by Prune-and-Search

One of them is the median finding problem studied before.

Algorithm P9-A2:
(1)decompose n data into groups each containing at most 15 data
and find the median in each group.
(2)Find the median M of these n/15 medians obtained recursively.
(3)Decompose the n data with respect to M:
S = aset of data < M,
L = aset of data > M,
E = aset of data = M.
(4) if K=|L|, find the k-th largest element in L recursively.
(5) If k>|L|+|E|, find the (k-|L|-1)-th largest element in S recursively.
(6) Otherwise return M as a solution.
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This algorithm
(1)decomposes the whole into (n/15) groups of size at most 15,
(2)sorts the elements in each group,
(3)finds the median of the medians of all groups,
(4)decomposes the whole by the median to find to which group
the desired k-th largest element belongs to, and
(5)applies the algorithm recursively to the group.

(1) is done in constant time (nothing in particular).

(2) 1s done Iin time proportional to 42 X (n/15).

(3) i1s done In T(n/15) time.

(4,5) are done in at most T((11/15)n) time, because the size of each
set resulting by the decomposition is at most (11/15)n.

The recurrence equation is given by
T(n) = 42(n/15) + T(n/15) + n + T((11/15)n).

Solving this, we have
T(n) =19n. 102
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Prune-and-Search using two parameters
- Time to examine all the elements is linear in the problem size.
- After the examination, we solve the original problem by solving
the reduced problems of sizes an and bn recursively.
- The recurrence equation is
T(n) = T(an) + T(bn) + cn.
If O<a+b < 1, O<a<l, O<b<l, the solution to the above equation
IS given by
T(n) = O(n).

Exercise: Prove the above observation.
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2-dimensional Linear Program

on variables x and y.

Problem P15: (2-dimensional Linear Program)
Find (X, y) to minimize (or maximize) a linear objective
function cx+dy among those satisfy all the linear inequalities

General form:
Objective: c¢;X; + C,X, —min

dy Xy + X, 26,

subject to : dy;x, + d;,X, =€y,

If we set y=c,X; + C,X,, X=Xy,
n inequalities are classified into
lower constraints
y=ax+h,
and upper constraints
y=ax+h;,
depending on signs of d.,/c,.
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8 :

B BIRBEEL : x, + 2x, —min

HilFIEH: (1) -2X, =-5, (2) 2x, =-3, (3)-3x, - 4x, =-14,
(4) X, + 4%, 20, (5)2%, + 2%, 23, (6) %, =-2,
(7) -x,=-8.

@ Y=X; + 2%, X=X,
BrIRE%L:y —min

FIFIEHE: (2)y=x-3, (4) y=(1/2)x, (5') y=-x+3,
(1Y =x+5, (3)Y=-(1/2)x+7, (6'7") -2=x=8.

BEZon-fIHNREI RXTHEETHX YDIE, yDIEN
R/INEEDERDITAHIENTERE.

Rp=(X,Y) NI RTOHNKZER‘/-TEE, RplE
E1TA[gE(feasible) THHEE LY, TDELOH A DFEEFE
EITAIEEFREIB &LV, 15142



Example:

Objective: X, + 2X, —=min

subject to: (1) -2x, =-5, (2) 2x, =-3, (3)- 3xl ax, =-14,
(4) x, + 4x, 20, (5)2x; + 2x, =3, (6) X,=-2,
(7) -x,=-8.

@ Y=X; + 2X, X=X,
Objective:y —min

subject to: (2)y=x-3, (4") y=(1/2)x, (5') y=-x+3,
(L)Y =<x+5, (3)Y=-(1/2)x+7, (67") -2<x=8,

Find a point (X, y) of the smallest y value among all those points
satisfying all the constraints. When a point p=(X,y) satisfies all
the constraints, we say the point p Is feasible, and a region of

such feasible points is called a feasible region.
16/42



B IR y —min
FIFIEH: (2)y=x-3, (4) y=(1/2)x, (5') y=-x+3,

(L)Y =x+5, (3)y=-(1/2)x+7, (67) -2<x=8.

1 (1)
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' (©)

/(3)
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Objective:y —min
subject to: (2')y=x-3, (4") y=(1/2)x, (5') y=-x+3,
(L)Y =x+5, (3)Y=-(1/2)x+7, (67) -2<x=8.

1 (1)

/
\\E

the dotted region
( Is a feasible
region

An optimal solutj Y (3
IS a point of the
smallest y value In
the feasible regio

' (©)
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2DODEBDERE
g(x): TARKNKZm-I EmEDERERI BN
h(x): LAHIRRZm-I EENERxRI EHEHK
JIENB5,

g(x) = max{ax + b; [ 1 €1, }

h(x) = min{ax +b. | i €1,
EEDHDHES, EITRIEEREFIE

F={(x,y)|g(X) =y=h(x) and a=x=b}
ERIETES.
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Lemma: A feasible region forms a convex polygon (if it exists).

Proof: A feasible region is a region satisfying all the constraints
The region satisfying the lower constraints is convex downward.
The region satisfying the upper constraints is convex upward.
Thus, the intersection of these convex regions Is also convex.

Definition of two functions
g(x): function representing the boundary of the region satisfying
the lower constraints
h(x): function representing the boundary for the upper constraints
That Is, If we define
g(x) =max{ax +b; |1 €1, }, and
h(x) =min{ax +b; |1 €1, }
then, the feasible region F is expressed by
F={(x,y) | g(X) =y=h(x) and a=x=b}.
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HFIEE: y=ax+Db,i €L, (FTAFIKK)
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2-dimensional linear program

Objective:y —min

subject to: y=ax + b, i €1, (lower constraints)
y=axXx + b, i €1,(upper constraints)
a =xX=b,

Here, | 1,| + | 1,] =n (there are at most n constraints.)

Algorithm P15-A0: (divide-and-conquer)

- Decompose the upper constraints into two parts, and find a
feasible region (convex polygon) recursively for each part and

then merge the two convex polygons to have their intersection.

- Similarly, compute a feasible region also for the lower constraints
based on divide-and-conquer method.

- Find the intersection of the two feasible regions and return a
vertex of the smallest y value as a solution.

22142
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Divide the set of lower constraints into two and find feasible
regions recursively.

The intersection of the two regions gives us
the whole feasible region for lower constraints

Exercise: Prove that the algorithm based on divide-and-conquer runs

In O(n log n) time.
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NMEDFINXNEZoNT=LE, FIET HEITRIREFEEEEIC
ERI N IE, O(n log n)BEREIMMS.

~ 0

REZERO7ILT) X LEEHICE, ETAIEEEEAZEIC
ERETIC, ERESEZADERTRKOLENDE.

~ 0

BAYIREDERA.
-HlHKXEBIRLT, —EFESDHNXZRELZHFIRXE
LTHIBRT 5.
ExEfEr 5 ZATERII2DDHIFIXITH ST IERD
XmeELTEZRLNS.
BEg(X) ENX)DEBEFFI BT 5.
gX)IETIZh, h(x)IEEZfh
-1=1=L, BEg(X)EhX)DEEZEKR DO LHET SHE, O(nlog n)
BRI MM TLESICEITEE.
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Given n constraints, if we construct the corresponding feasible
region in an explicit manner, then it takes O(n log n) time.

To obtain a linear-time algorithm, we need to find an optimal
vertex without constructing the whole feasible region explicitly.

Idea based on Prune-and-Search
By examining the constraints, we remove constraints by a
fixed ratio as redundant constraints.
» A vertex giving an optimal solution is specified as an
Intersection of two lines corresponding to constraints.
- Use properties of the functions g(x) and h(x)

g(x) is convex downward while h(x) is convex upward.

- Note that if we compute the whole of the functions g(x) and
h(x) then it takes O(n log n) time.

26/42



BEg(x)Eh(X)DEEZRAVL=HRMYERR

B ()T AR *TFB?’éFaﬁy&g(x)(i'Fl i,
() L AKX ST HBREEh(X)(E LIZh,
(B)xDIE D ERFH (X[a,b].

X [E[a,b]NDEEDXEIEELI-EE,
EHEx=XETAFNKXEDOXR AN P TYEEF KD A
g(X)=max{ax' +b; [ 1 €1, }
Eigx=x't EAHIHKEDK A D P CTYEEZEZ/ND A
h(x’) = min{ax' + b; |i €1, }
ZZT, gX) =h(X) EnlE, x=x'[XEITelgEfEE X H 5.
GEE) EOBEBIEIXO(n)EE Tt E AT #E

H—2Z1:g(x) > h(X)D &=

r—2X2:g(x) Sh(xDEE

WITNDFEICH, RETS5ZIEHRDEZIZEYTES
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Prune-and-Search based on the properties of g(x) and h(x)

Properties

(1) The function g(x) for the lower constraints is convex downward,
(2)The function h(x) for the upper constraints is convex upward, and
(3) The range of x Is [a,b].

When we specify any X’ in the interval [a,b],
among intersections of the line x=x" with lower constraints find the one of
the largest y value gives g(x’)
g(x)=max{a;x' + b; |1 €1, }
among intersections of the line x=x" with upper constraints find the one of
the smallest y value gives h(x’)
h(x) =min{ax'+ b, |1 €1, }
If g(x") =h(X') then the line x=x" really intersect a feasible region.
(Remark) The above function values care computed in O(n) time.
Case 1:9(x') > h(x")
Case 2:g(x") =h(x)
In either case, we remove redundant constraints based on the slope of the line

giving the intersection.
28/42



—R1:9(x") > h(x"DEE

T

h(x')

X=X

IX)DIEZEZ A ZFYy=ax + b, £T 5.

r—R1L1L XV 5Z5HMEXN =1 DDI5FE
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Case 1:g(x') > h(x")

T

h(x)

X=X
Suppose the constraint y=axx + b; gives the value of g(x').
Case 1.1: Only one constraint gives g(x')
In this case, the differential value g’(x’) of the function y=g(x)
at x=x’ IS obtained as g'(x')=a.
Case 1.2: More than one constraint give the value of g(x’)
The largest slope among those functions is
the differential value at the left of x=x". %
The smallest slope among those functions iIs

the differential value at the right of x=x". X%




REFENELLDAMIZHLIMERY =L
=B f(X) = g(X) - h(X) DEA
g(x): TAHIFX, T2
h(x): EAFBK, EIZM, -h(x) XTI
£(X)=g(x)-h() & F =M.
(X,y)DNEITA[EE<=> g(X) =y =h(X) <=>f(X) = 0

A NN

/ f(x)
\\// \\ _ / \
~ F(X)=0

h(x)=g(X)D Y ILDFr R THIR R (HEFR TR )
Xx=X'|2H 1T Dy=g(X) DIEZ =T TIIHEFED H A%
4ETFETHEIETELLY

y=f(X)DIEZEEZSE, B IITX)DIEH LT D5 BHEdHh S




Want to know in which side an optimal solution lies.
Introducing a new function f(x) = g(x) - h(x).
g(x): lower constraints, convex downward
h(X): upper constraints, convex upward, -h(x) is convex downward
f(x)=g(x)-h(x) Is convex downward.
(x,y) is feasible <=> g(x) =y =h(X) <=>f(x) = 0

KA NN WAL

f
\\/// N / \ "

/
N—" f(x)=0

Various situations (indicated by vertical lines) in h(x')=g(x') holds
We cannot know the direction of an optimal solution using only
slope of y=g(x) at x=x".

Considering the slope of y=f(x), an optimal solution lies in the

direction in which f(x) value decreases. 32/42




BEEy=f(X)Dx=x'1ZH T HE=ZEY =L>
ONEFMEIT, x=x'(DER)IZEITHy=gxX)DIE=
O(N)BFMEIT, x=xX'(DER)IZHITHy=h(x)DIE=
NLEAVNTEX (DER)IZEITAYy=T(XDIEZERDS.
f(X)>0M DX=X'DHEIZE T DYy=F(X) DIEEZ<0D &L=
RERIIx=XDEIZHD.
f(X)>0MDX=X'DEIZE T BYy=fX)DIEZ>0D &=
RERRIIXx=XDEIZHB.
s TN
fRIIFRELEL.

mEEDARNTMNEE, RRGHINKXZHIFRTES.
TDAHEIE?
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Want to know the slope of the function y=f(x) at x=x*
O(n) time suffices to find slopes of y=g(x) at x=x'(and around it).
O(n) time suffices to find slopes of y=h(x) at x=x'(and around it).
Using them, find slopes of y=f(x) at x=x’ (and around it).

When f(x’)>0 and the slope of y=f(x) at the right of x=x" <0

optimal solution lies to the right of x=x’.

When f(x’)>0 and the slope of y=f(x) at the left of x=x >0

optimal solution lies to the left of x=x".

Otherwise,

there Is no solution.

Once the direction of an optimal solution is known, we can remove
redundant constraints.
How?

34/42



X=X'DAICRERNHLES

TAHEKZE2DT ORFIZTAS.
EAHHKE2DT ORT7IZTS.
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When an optimal solution lies to the right of x=x"

Decompose lower constraints into pairs.
Decompose upper constraints into pairs.
If we have odd number of constraints, then leave the last one.

t t

\T D\

optimal solution optimal solution

Pair (i, j) of lower constraints: y=ax +b;,y=Zax+b,
Let their intersection be X;;.
Note that the feasible region is in the region [a,b].
(1) Case 1: x;=a,
Optimal solution lies to the right. So, the one of smaller
slope in the pair is redundant.
(2) Case 2 x;=b,
Optimal solution lies to the left. So, the one of larger
slope in the pair is redundant.

(3)Case 3: otherwise. 36/42
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(D) DREIEIZEZ LAY,

2Q)x, [T =BEFETHD.

R)mEE Ix=x DHEIZHS.

(D FREFEIIx=x DEIZHD.

QB)DIGE, KEMX=X DEIZHAHANT(i,j)I2DLTIL,
—ADFHIFXZE N REHIFIXEL THIFRATEE.
BDIFE, RENIX=X DHEIZHAHRT(i,)IZDLTIL,
— A DFHIFKXZ R RKEHIFIKX EL THIFBRATEE.

L=h>T, $91V/ADHEIKKZHIBRT HZENTES.
>N UIRREICK VIR R TREFENKRED.
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When the intersection lies in the interval [a,b]:
Find the intersection x;; for each such pair and compute the
median of those intersections.

Do the same calculations as before, say to compute g(x) and h(x)

at x=x,,. Then , we have one of the followings as the result.

(1) This problem has no solution.

(2)x,, Is the optimal solution.

(3)An optimal solution lies to the right of x=x,.

(4)An optimal solution lies to the left of x=x.

For (3), we can remove one of the paired constraints whose
Intersection lies to the left of x=x_, as a redundant constraint.
For (4), we can remove one of the paired constraints whose
Intersection lies to the right of x=x_, as a redundant constraint.
Thus, we can remove about Y2 of all constraints.
=» We can find an optimal solution in linear time using Prune-
and-Search. 38/42
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BED-O, EDOHIFIKXEXEYOMAITERTE2EDETS.
OnEoHIFNKZE TAHKNKXELAHRBIKIZN T, EhENT
RT7eEd. TENENDOARTICSHLTHIGT HERDRX A ZE
RDD. TDEIGERADEKIKIFEIZN2THS.

2) LEEDK RT=LDXEZD FREX,ZRKDHD.

) E X=X, T ARSI T ST AEFELFHIFIRIC
HMIGTHLEARFEDRRE RAZTEZADFIRXZERHD
EIZRY, ENODRAICHITHERITAIREREBDIEESZEKRDH D.
(4) LR TROH-MES LY RBERR DN E X=X, D EL LIS
HAENZEHIEL, TORMBICKR[ZLDFHADARTIZDONT
—ADHFXZT L REHFXELTHIFRT 5. CDESHIFRSN
HFIRIRIE, DElEn/MEHS.
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Theorem: A 2-dimensional linear program can be solved In
time linear in the number of constraints.

Proof:

For simplicity, we assume that every constraint is associated with both x and y.
(1) Divide the n constraints into lower and upper constraints and decompose
them into pairs in each group. For each pair, compute the intersection of

their associated lines. There are about n/2 such intersections in total.

(2)Find the median of those x-coordinates X...

(3)At the line x=x,,, we compute slopes of the boundary of the feasible region
by finding the lower constraint giving the intersection with the lower boundary
for lower constraints and the one for the upper boundary for upper constraints.
(4) Using the slopes obtained above, we check which side of the line x=x,
contains an optimal solution, and then we remove as redundant constraints one
of paired constraints having their corresponding intersection in the other side.
Then, there are at least n/4 constraints to be removed.
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Therefore, if we denote by T(n) the time to solve a 2-dimensional

linear program, then we have

(1)intersections for those pairs can be computed in O(n) time in total,

(2) is done in O(n) time (median can be found in linear time in the
worst case).

(3)O(n) time suffices to compute intersections with all constraints
to compute the intersection with the boundary.

(4)The operations to remove redundant constraints using the location
of the median are done in O(n) time. Then, the number of
constraints iIs reduced to at most (3/4)n.

Hence, If we represent O(n) time by cn for some constant ¢, then
we have

T(n) =T((3/4)n) + cn,
from which we obtain T(n) = O(n).

Exercise: How should we treat those constraints associated only
with x or y?
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