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T(n) =T(rn) + cn

= 155.
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Principle of Prune-and-Search

Solve a given problem by removing as many redundant elements
as possible by examining every element and solving the reduced
problem recursively.

T(n): time to solve a problem of size n.
Assume that examination of every element of a problem of size n
reduces the problem size into rn (r<1).
If we can examine all the elements in cn time, then we have the
recurrence equation

T(n) =T(rn) + cn.

The equation can be solved as follows: Here assume that rkn=1 and

T(1)=d, a constant. Then, we have

T(n) =T(rn) + cn =T(r2n) + crn + cn =T(rn) +cr2n+ crn + cn
=T(rkn) +crkIn+ == =+cr2n+ crn + cn =d +cn/(1-r).

Thus, we have T(n) = O(n), I1.e., it runs in linear time. 4/62
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2-dimensional Linear Program

on variables x and y.

Problem P15: (2-dimensional Linear Program)
Find (X, y) to minimize (or maximize) a linear objective
function cx+dy among those satisfy all the linear inequalities

General form:
Objective: c¢;X; + C,X, —min

dy Xy + X, 26,

subject to : dy;x, + d;,X, =€y,

If we set y=c,X; + C,X,, X=Xy,
n inequalities are classified into
lower constraints
y=ax+h,
and upper constraints
y=ax+h;,
depending on signs of d.,/c,.
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B IR y —min

FIFIEH: (2)y=x-3, (4) y=(1/2)x, (5') y=-x+3,
(1Y =x+5, (3\Y=-(1/2)x+7, (6'7") -2=x=8.
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Objective:y —min
subject to: (2')y=x-3, (4") y=(1/2)x, (5') y=-x+3,
(L)Y =x+5, (3)Y=-(1/2)x+7, (67) -2<x=8.

1 (1)

/

the dotted region
IS a feasible
region

An optimal solutj Y (3
IS a point of the
smallest y value In
the feasible regio

' (©)

8/62



i RITRIREREEFIE, BLEEI NI NS ATERT.

slEER : RAT R RE R L RIFI K Z it 1= 9 R 18
TARRMNEE-I BT,
AR ZEm-I B I,

FOoT, TENOLDOOLBEEDEBEH LI THS.

2DODEBDERE
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Lemma: A feasible region forms a convex polygon (if it exists).

Proof: A feasible region is a region satisfying all the constraints
The region satisfying the lower constraints is convex downward.
The region satisfying the upper constraints is convex upward.
Thus, the intersection of these convex regions Is also convex.

Definition of two functions
g(x): function representing the boundary of the region satisfying
the lower constraints
h(x): function representing the boundary for the upper constraints
That Is, If we define
g(x) =max{ax +b; |1 €1, }, and
h(x) =min{ax +b; |1 €1, }
then, the feasible region F is expressed by
F={(x,y) | g(X) =y=h(x) and a=x=b}.
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Given n constraints, if we construct the corresponding feasible
region in an explicit manner, then it takes O(n log n) time.

To obtain a linear-time algorithm, we need to find an optimal
vertex without constructing the whole feasible region explicitly.

Idea based on Prune-and-Search
By examining the constraints, we remove constraints by a
fixed ratio as redundant constraints.
» A vertex giving an optimal solution is specified as an
Intersection of two lines corresponding to constraints.
- Use properties of the functions g(x) and h(x)

g(x) is convex downward while h(x) is convex upward.

- Note that if we compute the whole of the functions g(x) and
h(x) then it takes O(n log n) time.
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Prune-and-Search based on the properties of g(x) and h(x)

Properties

(1) The function g(x) for the lower constraints is convex downward,
(2)The function h(x) for the upper constraints is convex upward, and
(3) The range of x Is [a,b].

When we specify any X’ in the interval [a,b],
among intersections of the line x=x" with lower constraints find the one of
the largest y value gives g(x’)
g(x)=max{a;x' + b; |1 €1, }
among intersections of the line x=x" with upper constraints find the one of
the smallest y value gives h(x’)
h(x) =min{ax'+ b, |1 €1, }
If g(x") =h(X') then the line x=x" really intersect a feasible region.
(Remark) The above function values care computed in O(n) time.
Case 1:9(x') > h(x")
Case 2:g(x") =h(x)
In either case, we remove redundant constraints based on the slope of the line

giving the intersection.
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Case 1:g(x') > h(x")

T

h(x)

X=X
Suppose the constraint y=axx + b; gives the value of g(x').
Case 1.1: Only one constraint gives g(x')
In this case, the differential value g’(x’) of the function y=g(x)
at x=x’ IS obtained as g'(x')=a.
Case 1.2: More than one constraint give the value of g(x’)
The largest slope among those functions is
the differential value at the left of x=x". %
The smallest slope among those functions iIs

the differential value at the right of x=x". X=¥62




REFENELLDAMIZHLIMERY =L
=B f(X) = g(X) - h(X) DEA
g(x): TAHIFX, T2
h(x): EAFBK, EIZM, -h(x) XTI
£(X)=g(x)-h() & F =M.
(X,y)DNEITA[EE<=> g(X) =y =h(X) <=>f(X) = 0

A NN Wi
\/ /|

/ L / \ f(x)

P
~ f(x)=0

h(x)=g(X)D Y ILDFr R THIR R (HEFR TR )
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Want to know in which side an optimal solution lies.
Introducing a new function f(x) = g(x) - h(x).
g(x): lower constraints, convex downward
h(X): upper constraints, convex upward, -h(x) is convex downward
f(x)=g(x)-h(x) Is convex downward.
(x,y) is feasible <=> g(x) =y =h(X) <=>f(x) = 0

KA NN WAL

f
\\/// N / \ "

/
N—" f(x)=0

Various situations (indicated by vertical lines) in h(x')=g(x') holds
We cannot know the direction of an optimal solution using only
slope of y=g(x) at x=x".

Considering the slope of y=f(x), an optimal solution lies in the

direction in which f(x) value decreases.
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Want to know the slope of the function y=f(x) at x=x*
O(n) time suffices to find slopes of y=g(x) at x=x'(and around it).
O(n) time suffices to find slopes of y=h(x) at x=x'(and around it).
Using them, find slopes of y=f(x) at x=x’ (and around it).

When f(x’)>0 and the slope of y=f(x) at the right of x=x" <0

optimal solution lies to the right of x=x’.

When f(x’)>0 and the slope of y=f(x) at the left of x=x >0

optimal solution lies to the left of x=x".

Otherwise,

there Is no solution.

Once the direction of an optimal solution is known, we can remove
redundant constraints.
How?
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When an optimal solution lies to the right of x=x"

Decompose lower constraints into pairs.
Decompose upper constraints into pairs.
If we have odd number of constraints, then leave the last one.

t t

\T D\

optimal solution optimal solution

Pair (i, j) of lower constraints: y=ax +b;,y=Zax+b,
Let their intersection be X;;.
Note that the feasible region is in the region [a,b].
(1) Case 1: x;=a,
Optimal solution lies to the right. So, the one of smaller
slope in the pair is redundant.
(2) Case 2 x;=b,
Optimal solution lies to the left. So, the one of larger
slope in the pair is redundant.

(3)Case 3: otherwise. 22/62
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When the intersection lies in the interval [a,b]:
Find the intersection x;; for each such pair and compute the
median of those intersections.

Do the same calculations as before, say to compute g(x) and h(x)

at x=x,,. Then , we have one of the followings as the result.

(1) This problem has no solution.

(2)x,, Is the optimal solution.

(3)An optimal solution lies to the right of x=x,.

(4)An optimal solution lies to the left of x=x.

For (3), we can remove one of the paired constraints whose
Intersection lies to the left of x=x_, as a redundant constraint.
For (4), we can remove one of the paired constraints whose
Intersection lies to the right of x=x_, as a redundant constraint.
Thus, we can remove about Y2 of all constraints.
=» We can find an optimal solution in linear time using Prune-
and-Search. 24162
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Theorem: A 2-dimensional linear program can be solved In
time linear in the number of constraints.

Proof:

For simplicity, we assume that every constraint is associated with both x and y.
(1) Divide the n constraints into lower and upper constraints and decompose
them into pairs in each group. For each pair, compute the intersection of

their associated lines. There are about n/2 such intersections in total.

(2)Find the median of those x-coordinates X...

(3)At the line x=x,,, we compute slopes of the boundary of the feasible region
by finding the lower constraint giving the intersection with the lower boundary
for lower constraints and the one for the upper boundary for upper constraints.
(4) Using the slopes obtained above, we check which side of the line x=x,
contains an optimal solution, and then we remove as redundant constraints one
of paired constraints having their corresponding intersection in the other side.
Then, there are at least n/4 constraints to be removed.
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Therefore, if we denote by T(n) the time to solve a 2-dimensional

linear program, then we have

(1)intersections for those pairs can be computed in O(n) time in total,

(2) is done in O(n) time (median can be found in linear time in the
worst case).

(3)O(n) time suffices to compute intersections with all constraints
to compute the intersection with the boundary.

(4)The operations to remove redundant constraints using the location
of the median are done in O(n) time. Then, the number of
constraints iIs reduced to at most (3/4)n.

Hence, If we represent O(n) time by cn for some constant ¢, then
we have

T(n) =T((3/4)n) + cn,
from which we obtain T(n) = O(n).

Exercise: How should we treat those constraints associated only
with x or y?
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Linar Program and Linear Programming

Input: Linear inequalities and linear objective function
Output: Determine whether there is a solution satisfying all
the linear inequalities, and if there exists, find a solution to
maximize (or minimize) the objective function.

n: number of variables,

m: number of constraints given as linear inequalities
Since constraints are given as linear inequalities on n variables,
they correspond to half spaces in the n-dimensional space.
Thus, it suffices to determine whether m half spaces have their
Intersection, and If it exists, to find a vertex at which the objective
function I1s maximum(or minimum).
Feasible region:intersection of m half spaces

It is known that Linear Program can be solved in polynomial time
In nand m. 32/62
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2-variable linear program

Feasible region is intersection of half planes in the plane,

which is always a convex polygon.

3-variable linear porgram

Feasible region is intersection of half spaces in the space,

which is always a convex polyhedron.

General form of Linear Program
Objective function: ¢,X;+C,X,+...+C, X, =>min
Here, c,, C,, ..., C, are given constants.
Constraints:
Inequalities a;X,+a,,X,+...+a; X, =b,
8, X Ha Xt Fay X b,
Equalities  @y,q 1 Xy +aq oXoF . Fayeq 1 X, =Dy

amlxl+am2X2+'"-I_amnxn :bm
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Problem P16: Suppose 2 products P, and P, are made from 2
materials A and B. How can we maximize the profit?

Quantity required to make one unit of products
For products P,, 2 units of A and 4 units of B are required.
For products P,, 3 units of A and 5 units of B are required.
5 units of A and 9 units of B are available.

Profit: 30,000 yen per unit for product P,, 40,000 yen for P,
>
Let x, and X, be quantities of P,and P,. Then, the profit is given by

3X, + 4x, objective function (to be maximized)
On the other hand, constraints are

2x, +3 X, =5 constraints on quantities available
4x, +5Xx, = 9 constraints on quantities available
x,=0,%x,=0  quantities are not negative.
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BEIEAEL: 3x, + 4x,>&K X, |

HESESE .
2X, +3 X, = 5
4, +5%x, =9 ]
X, =0, X,=0

B B4 3x, + 4x,=K
>EH#R x,=-(3/4)x, + k/4
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DFY, B RP,E1BAL, AP,
1B HEET HDHERE.
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27169
91102



Linear Program

Objective function: 3x; + 4X,2>max x,

Constraints: .
2%, + 3%, = 5
A, +5%, = 9 ‘
X, =0, X,=0

»
>

Objective function 3x; + 4X,=K
—->Line Xx,=-(3/4)x, + k/4

Intersection of lines corresponding s "

to two constraints is (1,1). =1 _Iﬁl?,pﬁi;%
That Is, producing one unit of product

P, and one unit of product P, is the best.

Exercise E7-1: Change the above constraints into constraints by
linear equalities and those of the form variable =0 by introducing

two variables x; and X,.
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Algorithm for Linear Program

Linear Program defined by n variables
=>the problem of finding a vertex among those vertices of a convex polyhedron
corresponding to constraints in the n-dim space at which the objective function

IS optimized.
Here, notice that if we enumerate all the vertices then it takes
exponential time.

Simplex Algorithm (Dantzig, 1947)

Starting from a vertex of a convex polyhedron, we repeat an operation of
visiting a vertex among its adjacent ones to improve the value of the objective
function. When we cannot move anymore, we are at an optimal vertex.

Simplex Algorithm always finds an optimal solution.
"."Due to the property of a convex polyhedron, there is no vertex
that is only locally optimal. If we move only in the direction of
Improving the objective function, it always reaches an optimal
solution. 40/62
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Efficiency of Simplex Algorithm

It takes exponential time in the worst case. However,
It Is efficient in practice.

Can Linear Programs be solved in polynomial time?
Khachiyan's result (1979)
Ellipsoid algorithm: O(hm3L) time
n: number of variables, m:number of constraints
L: maximum number of bits used to specify coefficeints
Karmarker's interior method (1984)
O(nm4°Llog L) time algorithm
Famous for the application of algorithm patent by ATT
Mirzaian's DPA(Deepest Peak Algorithm)
He claims O(m?3n?) time, but the truth is not known.
Megiddo(1984), Clarkson(1986), Dyer(1986):
They propose algorithms which take time exponential in
the number of variables but linear in that of constraints,,,
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Problems formulated as Linear Programs

Problem P17: (Linear Separability)
Given two sets of points in the n-dim. space, determine whether

there exists a hyperplane separating them.

In the 2-dim. plane, the problem is to determine whether there
exists a line separating two sets of points.

linearly separable linearly nonseparable

44/62
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In the 2-dim. plane, two sets of points are separable if their associated

convex hulls (the smallest convex polygons containing them) have no
Intersection.

Linearly separable Linearly nonseparable

Algorithm P17-A0:

(1) Input two sets R and B of points, where n=|R|+|B|.
(2) Construct convex hulls CH(R) and CH(B) for these sets of points.
(3) Determine whether CH(R) and CH(B) have intersection.

If there Is any intersection, report that there is no solution.

Otherwise, find common inner tangents and report them as
separating lines. 46/62
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Algorithm P17-A0:
(1) Input two point sets R and B, where n=|R|+|B|.
(2) Construct convex hulls CH(R) and CH(B) for these sets of points.
(3) Determine whether CH(R) and CH(B) have intersection.
If there Is any intersection, report that there is no solution.

Otherwise, find common inner tangents and report them as
separating lines.

Computation time of Algorithm P17-A0:
(1) takes O(n) time since it is only for input.
(2) takes O(n log n) time for convex hulls.

(3) takes O(n) time to compute intersection and inner tangent lines.
In total, it takes O(n log n) time.

Exercise E7-2:Let n and m be sizes of sets R and B. Represent

the total computation time using n and m. If there is big difference
between n and m, is there any other idea?

- _ /
s there more efficient algorithm? a0/0z
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y, =ax; + b, i=k+1, ..., n
Fr=1E, vy, =2ax, +b,i=1, ...k,
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HARYIDIET THS.
W2, b =-ax; +vy,, i=1, ...,k
b =-ax; +vy, i=k+1, ..., n
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Algorithm P17-Al based on Linear Programming

Let input point sets be
R={(X1,Y1), -+ » (% i)} and B={(Xs1,Yis1)s -+ » (Xns Yn)J-
If there Is a line separating R and B, then we must have
y. =ax; + b, i=1, ..., k
y, =ax; + b, i=k+1, ..., n
or y, 2ax; + b, i=1, ..., k,
y, =ax; + b, i=k+1, ..., n.

Conversely, if there iIs (a,b) satisfying
b =-ax; +y, i=1, ..., k,
b =-ax, +vy, i=k+1, ..., n
or b=-ax, +v, i=1, ..., k,
b=-ax; +vy;, i=k+1, ..., n
then R and B are linearly separable.
This is a linear program for two variables, and thus it can be
solved in O(n) time. 50/62
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Example: Suppose R={(1,2), (2,1), (3,1)} and B={(2,2), (3,3)}.

Linear Program 1: Linear Program 2:
b=-1*a+ 2, b= -1*a+2
b =-2%a+1, b = -2*a+1,
b =-3*a+1, b = -3*a+1,
b =-2*a+ 2, b = -2*a+ 2,
b =-3*a+3 b=-3*a+3

Exercise E7-3: Determine which linear program has a feasible
solution by drawing feasible regions in practice.

52/62
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Shortest Path Problem

Problem P18: Given a weighted graph G=(V,E,c) and two vertices
s and t, find a shortest (minimum-weight) path from s to t.

It is known that this problem can be solved by a famous Dijkstra's
algorithm. It is also formulated as a linear program.
Variables to be prepared:

d; = length of a shortest path from s to a vertex v;.
The length (weight) of an edge (v;,v;) Is denoted by c(v;,v;).
Then, the constraints become as follows:

d,=0 (with s=v,)

d, =d, +c(v;,v;)  for each edge (v;,v)),

where v; must be different from s.

Objective function becomes

max d, where v =t.
It can be solve in polynomial time, but Dijkstra's algorithm is more
efficient since it has many variables. >4/0z
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Exercise E7-4: Write a linear program corresponding to the graph
shown below.

Assume numbering:
(s,a,b,c,d, et
= (Vq, Vo, V3, Vg, Ve, Vg, V)

56/62
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Integer Program

Exactly, Integer Linear Program.
Constraints and objective function must be linear as in Linear
Program, but variables must take integral values.

It is a very powerful scheme in the sense that various problems
can be formulated as Integer Programs, but no polynomial time
algorithm is known.

It is called a 0-1 Integer Program if we may be arbitrary number
of constraints and any coefficients in an objective function, but
values of variable are restricted to 0 or 1. It is known that even
the 0-1 Integer Program is NP-complete. .
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Problems formulated as Integre Programs

Let n logical variables be (X, X,, ... , X;).
Logical variable x, or its negation —x, is called a literal.
A clause is a connection of three literals by OR V.
3SAT expression is a combination of clauses by AND A.
F(X1, Xa1 X3)
=(X; VXV X3) A(Tx VXV X)) A(TX VX,V X)
Truth assignment: assignment of truth value (O or 1) to each variable.
In the above example, we have
F0,1,1)= (OV—1V 1) A(—0 V1V /1) A(—0V1V 1) =1,
F(1,00)= (1V—0V 1) A(—™1 VOV /1) A(—1VO0OV 1) =0,
and so the truth assignment (0,1,1) satisfies the expression, but
(1,0,1) does not.
A 3SAT expression is called satisfiable if there is a truth assignment
satisfying it.
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Problem P19: (3SAT: 3-Satisfiablility Problem)

Given a 3SAT expression consisting of n variables and m clauses,
determine whether it is satisfiable or not, and find a truth
assignemt satisfying it if it is.

This problem is a typical NP-complete problem.

Formulation as an Integer Linear Program
Constraints for logical variables to take only O or 1
0 =x, =1, integer x;, i=1,2,...,n
Represent the negation —x; of variable x; as 1-x; .
Constraint associated with each clause
(X; V%,V X5) => X, + (1-X,) + X3 =1
Then, constraints for clauses are connected by putting AND
X; VXV X3) A(TX, VX,V —x3) A(—x, VX,V xg) =>
(X; V%,V Xg) => X, + (1-X,) + X3 =1,
(X VXV %) => (%)) + X, + (1-%5) 21,
(—X; VX,V Xg) => (1-X)) + X, + X3 =1. 62162




