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Lecture #6
Prune and Search (Cont’d)
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BMYRREDRE
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HIBRL, fig/hEhi-RMEZBIREIICAES

YA XNDOHEEERDICET DT HBEMET(N)ET 5.
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T(n) =T(rn) +cn

%=15%.

COFAEKIERDKLSIZEITS. 1120, rn=1&L, T()=d&T 5.
T(n) =T(rn) + cn =T(r2n) + crn + cn =T(r3n) +cr2n+ crn + cn

=T(rkn) +créin+ - = =+cr2n+crn +cn =d +cn/(1-r).
&£2T, T(n) = O(n)&RY, RBERTHEIEA LA D.
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Principle of Prune-and-Search
Solve a given problem by removing as many redundant elements
as possible by examining every element and solving the reduced

problem recursively.

T(n): time to solve a problem of size n.
Assume that examination of every element of a problem of size n
reduces the problem size into rn (r<1).
If we can examine all the elements in cn time, then we have the
recurrence equation

T(n) =T(rn) +cn.

The equation can be solved as follows: Here assume that rkn=1 and

T(1)=d, a constant. Then, we have

T(n) =T(rn) +cn =T(r2n) + crn + cn =T(rn) +cr2n+crn +cn
=T(rkn) +créin+ == =+cr2n+ crn + cn =d +cn/(1-r).

Thus, we have T(n) = O(n), i.e., it runs in linear time. 4162
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THX YISHET S HOBERERZTRTHEEZT (X, Y)D
T, &R0 BB #cx+dyDEZR/N(FERIEFRR)ITTS
1DERD K.

— R _ _ .

. Y=CyXg + CoXo, X=X, EELKE,
BEBISCx; + Cp —min | (EaRIg L /e,
BIRRM: dyx, +dpx, 26, HEzkY

Ay Xy + dypX, 26y, yZax+b;,
------ .| okoTHHmRE
dn1X1 + dnzxz =€, yéaix+bi,

DO LAHBXIZHE
TES.
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2-dimensional Linear Program

Problem P15:(2-dimensional Linear Program)

Find (x, y) to minimize (or maximize) a linear objective
function cx+dy among those satisfy all the linear inequalities
on variables x and y.

General form: ) If We set y=c,X; + CyXp, X=Xy,
Objectiver ¢,x; +¢X, _’E'“ n inequalities are classified into
subject to : dy;x, +dipX, Z€1, | Jower constraints

dyrXy + UyX, 26y, yZax+h;,
------ - and upper constraints
duyXy + dppXp =65 ySax+h;,

depending on signs of d;,/C,.
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B #9B8%%:y —min
FHEHE: (2)y=x-3, (4) y=(1/2)x, (5) y=-x+3,
LYy =x+5, (3)y=-(L2)x+7, (67) 2=x<8.

@)
@)
MENT D
EATARERE
EATAIRERRIE T 7 (3)
YEERRRIND 15 4 -
MR L (5) o

Objective:y —min
subject to: (2')y=x-3, (4) y=(1/2)x, (5') y=-x+3,
(L)Y =x+5, (3)Y=-(1/2)x+7, (67') -2=x=8.

@)

@
// @)

is a feasible
region

An optimal solutj /7 (3)

is a point of the y/~ “

smallest y value in L (5)
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the feasible region

W EATAEREFE, BLEETNDONSAKERT. |

SEBA : RAT AT AR R (X FIRI X & i T- 9 78
TARMMKEB-TRAEE TS,
EAGIRRER/- I T £,

&0 T, TNODHEBEDHERAHLITHS.

2DDEHDESR
g(x): TARIHNREE-TEEOERERTEK
h(x): EARIHREE-FEEOERERTEK
Thhs,

g(x) = max{ax +b; [ €1, }

h(x) =min{ax +b;|i €1, }
EEHDHEE, EITRIGEREFIZ

F={(x,y)| 9(x) Sy=h(x) and a=x=b}
ERBTED.
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Lemma: A feasible region forms a convex polygon (if it exists). ‘

Proof: A feasible region is a region satisfying all the constraints
The region satisfying the lower constraints is convex downward.
The region satisfying the upper constraints is convex upward.
Thus, the intersection of these convex regions is also convex.

——the dotted region

Definition of two functions
g(x): function representing the boundary of the region satisfying
the lower constraints
h(x): function representing the boundary for the upper constraints
That is, if we define
g(x) = max{ax + b; | i €I, }, and
h(x) =min{ax +b;|i €I, }
then, the feasible region F is expressed by
F={(x,y)|g(x) Sy=h(x) and a=x=b}.

10/62

nEQHIHRAEZoNIzEE, MET DRTAIREEEZERIC
BT NIE, O log n)ERIMNMS.

BEEBO7 LI XLERDICE, RITAEERSEEBIC
BRETIC, RERESADERERDIENBE.

BANYERODEZA.

HFRKESHKLT, —EASOFHNXERELFINR L
LCHIBRT 5.
RERESZBTEAL2ODOHPRICHETIERD
REELTEZDND.
BRI EN)DHEEEFIAT 5.

g)IETFIZfh, h(x)E L2
=120, BBy EhX)DEFRERDELIETSHE, O(nlog n)
BRI TLESICLITEER.

11/62

Given n constraints, if we construct the corresponding feasible
region in an explicit manner, then it takes O(n log n) time.

To obtain a linear-time algorithm, we need to find an optimal
vertex without constructing the whole feasible region explicitly.

ldea based on Prune-and-Search

By examining the constraints, we remove constraints by a
fixed ratio as redundant constraints.
- A vertex giving an optimal solution is specified as an
intersection of two lines corresponding to constraints.
- Use properties of the functions g(x) and h(x)

g(x) is convex downward while h(x) is convex upward.
-Note that if we compute the whole of the functions g(x) and
h(x) then it takes O(n log n) time.
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B#g()Eh() D EEZ RN YIRS
HEQ) TAMNISH G BEH)E T,
LA BT RN LI,
@D EDFEEF[a,b].

XE[ab] NDEEDXEIEELILE,
Efx=XETHHIHNREDR RADF TYEFERERD R
g(x)=max{ax +b;|i €1, }
Efx=xELAFIHNREDR RO F TYEZFER/INDR
h(x) =min{ax' +b;|i €1, }
ZIT, g(X) =h(x) &bIE, x=xXIERITAIREMRIERX D S.
CEE) L OBERKIEIZO(n) KT E 4.

H—21:9(x) > h(x)DE=

H—22:4(x) Sh(X)DE=

WFhDIBEICE, XAEEZEROESICIYTELY
X EHIRT 5. 13562

Prune-and-Search based on the properties of g(x) and h(x)
Properties

(1) The function g(x) for the lower constraints is convex downward,
(2)The function h(x) for the upper constraints is convex upward, and
(3) The range of x is [a,b].

When we specify any x” in the interval [a,b],
among intersections of the line x=x" with lower constraints find the one of
the largest y value gives g(x’)
g(x)=max{a;x' +b;|i €1, }
among intersections of the line x=x" with upper constraints find the one of
the smallest y value gives h(x’)
h(x) = min{ax' +b;|i €1, }
If g(x') =h(x') then the line x=x* really intersect a feasible region.
(Remark) The above function values care computed in O(n) time.
Case 1:9(x) > h(x’)
Case 2:g(x) =h(x)
In either case, we remove redundant constraints based on the slope of the line

giving the intersection.
14/62

[7—R1:90¢) > h(x)DEE|

X=xX'

gX)DIEE S ZBHIHIRKEYy=ax + b £T 5.

r—Z1L1L gV EEZBHFHAN 1 ODI5E
CDEE, x=xXI1ZH 1+ 5B Ehy=g(x) DM 5 Eg'(x)H
g'(x)=a,&LTRES.

F—2R1.2: gX)VEEZHHM XN EREHHIHE
ZNSDOEBOFDORADIEEHX=xDH

TOWHE
ZNSDEBDFOR/NDIEELX=XDE
TOWNME XT3¥62

Case 1:g(x") > h(x")

X=X'

Suppose the constraint y=ax + b; gives the value of g(x’).
Case 1.1: Only one constraint gives g(x')
In this case, the differential value g’(x’) of the function y=g(x)
at x=x’ is obtained as g'(x)=a;.
Case 1.2: More than one constraint give the value of g(x’)
The largest slope among those functions is
the differential value at the left of x=x".
The smallest slope among those functions is
the differential value at the right of x=x". X%

RERNEELDARICH I EHYT-L
=713 BIR f(x) = g(X) - h(x) DEA
g(x): TAFIHFKX, Tk
h(x): £ %I, £I2m, -h)ETFIZ0
f(x)=g(x)-h(x) LTI,
(xyY)DRITARE<=> g(x) =y =h(x) <=>f(x) =0

9(x)
h(x

(x)

(x)=0

h(x) S g(x) AR YL DHR R KR (HER TR )
x=X12H1FBy=g(x) DIEE 21T TIEHER D H A&
BETHEETELL.

y=f(X)DIEEEEZHE, HFBRIIF)DEMNBDT A FIEH S

Want to know in which side an optimal solution lies.
Introducing a new function f(x) = g(x) - h(x).
g(x): lower constraints, convex downward
h(x): upper constraints, convex upward, -h(x) is convex downward
f(x)=g(x)-h(x) is convex downward.
(x,y) is feasible <=> g(x) =y =h(x) <=>f(x) = 0

9(x)
h(x

(x)

f(x)=0
Various situations (indicated by vertical lines) in h(x')=g(x') holds
We cannot know the direction of an optimal solution using only
slope of y=g(x) at x=x".
Considering the slope of y=f(x), an optimal solution lies in the
direction in which f(x) value decreases. 18/62




BARy=f()Dx=xI=H T HEZEEY =L
ORI T, x=x'(DEHR) IZHITBy=g(x) DIEE
ORI T, x=x'(DEHA) IZHITBy=h(x)DIEE

IMBERVNTX=X (DER) IZHITHy=f () DIEEERHS.

f(X)>0MDx=xXDAEIZH T Hy=f(x) DIEZE<0D &=
BERII=XDAIZHSB.

f(X)>0MDx=XDEIZE T Hy=f(X) DIEZ>0D &F
BRERII=XDEIZHD.

ZTNUSE
fRIETFTELARLN.

REROAALRNDE, TREHHXZHIRTES.
TDHEF?
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Want to know the slope of the function y=f(x) at x=x*
O(n) time suffices to find slopes of y=g(x) at x=x'(and around it).
O(n) time suffices to find slopes of y=h(x) at x=x'(and around it).
Using them, find slopes of y=f(x) at x=x" (and around it).
When f(x’)>0 and the slope of y=f(x) at the right of x=x" <0
optimal solution lies to the right of x=x".
When f(x’)>0 and the slope of y=f(x) at the left of x=x" >0
optimal solution lies to the left of x=x".
Otherwise,
there is no solution.

Once the direction of an optimal solution is known, we can remove
redundant constraints.
How?
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x=xX'DAEIHBBHHIHE

TAHHHRE2DT ORTIZT 5.
EAFHRE2DTORTIZTS.
FIHRDFEHAELD, REDO—DIERTIZLALN.

RiE G RER
TAMHXDORT (1)) yZax+b;, yZax+b,
RREXETS.
TR HefElE L[, b]DEFE I~ H 1=
(1) x;SadEE,

RBRETEICHD. £oT, BEDPSVFHIBIETE
() X ZbDEE,

RBRAFEICHD. £oT, BEOKREVFHNE TR
R)EnSNDLEE 21062

When an optimal solution lies to the right of x=x"

Decompose lower constraints into pairs.
Decompose upper constraints into pairs.
If we have odd number of constraints, then leave the last one.

optimal solution  optimal solution

Pair (i, j) of lower constraints: y=ax +b;, yZax +b;
Let their intersection be X;;.
Note that the feasible region is in the region [a,b].
(1) Case 1: x;=a,
Optimal solution lies to the right. So, the one of smaller
slope in the pair is redundant.
(2) Case 2 x;2b,
Optimal solution lies to the left. So, the one of larger
slope in the pair is redundant.

(3)Case 3: otherwise. 22162

ZRh[ab]DREIZA-TLSEE

ZDEIBATIIDOVTRmxERSD, ThbDHR{EX,ZE

RDHSB.

X=X ZBWT, g ENX)DIEZRDHZHE, KERLFHEEITS

ZOLE, FTROVWTIhI ORERESBS:
) DB LA,

Qx| TRERETHS.

BB Ix=x,,DEIZHS.

@ REREIx=x,DEIZHD.

Q)DHE, TAD KX, DEIZHBHRT(ij)IZDNTIE,
—HOFIHKETRARKXEL THIBRATEE.
BOBE, A, DEICHBRT ()= DVTIE,
—ADFHNXZETRAHFIKXEL THIBRATEE.

Li=h> T, MUADHHMKZHIBRT DL TES.
=>HNVBF I L YR BRI TRIERARES.
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When the intersection lies in the interval [a,b]:
Find the intersection x; for each such pair and compute the
median of those intersections.
Do the same calculations as before, say to compute g(x) and h(x)
at Xx=x,,. Then, we have one of the followings as the result.
(1)This problem has no solution.
(2)x,, is the optimal solution.
(3)An optimal solution lies to the right of x=x,.
(4)An optimal solution lies to the left of x=x,.

For (3), we can remove one of the paired constraints whose
intersection lies to the left of x=x,, as a redundant constraint.
For (4), we can remove one of the paired constraints whose
intersection lies to the right of x=x, as a redundant constraint.
Thus, we can remove about ¥ of all constraints.
=> We can find an optimal solution in linear time using Prune-
and-Search. 24162




EBE2EHOHREMEL, FHXOBHEnOREERT
fEl+5.

FEER:

HEDT=0, EDFIHKxEyDOTEAICERTIEDETS.
ONEOHMHXZETAHHRELAFHHRXIZH T, ThELT
R7EHD. FRENORTICHLTHIET FEBEDOR %
RHD. ZDOEIUERADERILIFEF2THS.

Q) LEBDOK M=t DOXEFZD h R {Ex, EKH 5.

B E#x=x LT ARMRITHIETETAEREL AR
HIETHLARREDRE L, RAEEZDPHHXERDBC
LIZkY, FNODORHICHITHETAIGEER OIEEERDS.
(4) LB TROFMEE(CKYRBERHERX=X,,DEL A
HBENEHIEL, ZORIMAUITKAELDFHEDORTIZONT
—ADHPHRETRAFHXELTHIRT . CoLEHIBRSh
BHEIH L, DadeEn/sfEH 5.
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Theorem: A 2-dimensional linear program can be solved in
time linear in the number of constraints.

Proof:

For simplicity, we assume that every constraint is associated with both x and y.
(1) Divide the n constraints into lower and upper constraints and decompose
them into pairs in each group. For each pair, compute the intersection of

their associated lines. There are about n/2 such intersections in total.

(2)Find the median of those x-coordinates X

(3)At the line x=x,, we compute slopes of the boundary of the feasible region
by finding the lower constraint giving the intersection with the lower boundary
for lower constraints and the one for the upper boundary for upper constraints.
(4) Using the slopes obtained above, we check which side of the line x=x,
contains an optimal solution, and then we remove as redundant constraints one
of paired constraints having their corresponding intersection in the other side.
Then, there are at least n/4 constraints to be removed.
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L=t T nfADHBX TERSND2E MR B EE
O DEEET(NET BE,
OHHXDRTIZKFT B RIFOM)EEMTEHETES.
QB0 EFHE (RETHIRWEM THRIEZLRDHDIEMNTTEE).
RERLOXABTATOFIWKLEDZ RERANIELNDS
o(n)EFfE T+ 4.
AP RIEDLEZEFIAL THFKZHIERT SR EL0()EFRE.
ZhIZ&YFIFKIEE < GA)nMEIZHS.
L1zh3>T, O(n)DEFEIZE LA E HclckYenER (S,

T(n) =T((3/4)n) +cn
EWSHEHERERD. ThERITIE, T(h) = 0%/ 5.

EEEE T OHFK Oy EFORMXAB L, ThoE
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Therefore, if we denote by T(n) the time to solve a 2-dimensional

linear program, then we have

(1)intersections for those pairs can be computed in O(n) time in total,

(2) is done in O(n) time (median can be found in linear time in the
worst case).

(3)0(n) time suffices to compute intersections with all constraints
to compute the intersection with the boundary.

(4)The operations to remove redundant constraints using the location
of the median are done in O(n) time. Then, the number of
constraints is reduced to at most (3/4)n.

Hence, if we represent O(n) time by cn for some constant c, then
we have

T(n) =T((3/4)n) +cn,
from which we obtain T(n) = O(n).

Exercise : How should we treat those constraints associated only
with x or y?

28162
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HH: TR TORBIEREB-THBILHIMNEINE
FEL, BAFETDHAICE, SHICEEKE
BR(FLFHR/MNICT2HERDD.

n: EHOEL,

m: fEAERDOHB TEZLNSHNRDOE LK
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FRNENHINRTEROEERIZT LTS,

LizhoT, mMEOFEMOEBRANEET ENEINE
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(FzIZBR/MN 12T 2EDERDAIELL.
RATARESESEL: mE O =R O K@ L5

R EREEnEMIZE Y 2 S AKX TR HIEA

Linar Program and Linear Programming

Input: Linear inequalities and linear objective function
Output: Determine whether there is a solution satisfying all
the linear inequalities, and if there exists, find a solution to
maximize (or minimize) the objective function.

n: number of variables,

m: number of constraints given as linear inequalities
Since constraints are given as linear inequalities on n variables,
they correspond to half spaces in the n-dimensional space.
Thus, it suffices to determine whether m half spaces have their
intersection, and if it exists, to find a vertex at which the objective
function is maximum(or minimum).
Feasible region:intersection of m half spaces

It is known that Linear Program can be solved in polynomial time

Hon TS, 3Lk innand m. 32062
2ER OB ERERE 2-variable linear program

2RAEFEICEITHFFEDHBARD HEITAIREMR
BT LEBEMIZES.

SER DR ERME
SREEMICHITHEER DL BASD HIRITAIREFELEL
DY SERICES.

Rzt E RE O — ik
B FIBEEL ¢ x Xt +C X, D min
=120, ¢y, Gy o GIF B AN = ER
=
FEAFI  axtax+.+ax, =b;

QX Ao+ X, Shy
FREE 8 Xt o Fan, X0 Dt

A Xy FameXot...Fam X, by 33062

Feasible region is intersection of half planes in the plane,
which is always a convex polygon.

3-variable linear porgram
Feasible region is intersection of half spaces in the space,
which is always a convex polyhedron.

General form of Linear Program
Objective function: ¢,X;+C,X,*...+C X, >min
Here, ¢y, C,, ..., C, are given constants.
Constraints:
Inequalities  a,,X;+a,,X,+...+a;,X, =b;
QX Ao+ Fa X, Shy
Equalities  ay,; 1 X8 oXot - ey, oXn “Diees

A XqH Xt +8p X, by 3462

FAREP16: 2FEE D EMHALBIZKY 2B EEDELRP, &P, Z 8E T
558, EQLIBEEHEZIL TNITFEZRKICTESLZN?

Problem P16: Suppose 2 products P, and P, are made from 2
materials A and B. How can we maximize the profit?

HRFIBHNETIOIRELRRMEOE
BRP, TlE, AZ2, BRABEMA L TRE
HERP,TlE, A%3, BESHUNETRE

BEHMHOEEL, ANSELL, BAB LS

F2EER WP, (FIHM B-Y3FMA, BRP,IT4HH

>

AP OEEEEX, HRP,NEEEEX.ET DL,

EXNOYIE IR

3x, +4x, (TR RE) BB
TEZbNS. —A, HlKIE

2, +3x, =5 HEEEOBERF

4, +5%x, =9 HEEEOERF

X =0,%,=20 A£EEFFE
L%,
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Quantity required to make one unit of products
For products P;, 2 units of A and 4 units of B are required.
For products P,, 3 units of A and 5 units of B are required.
5 units of A and 9 units of B are available.
Profit: 30,000 yen per unit for product P, 40,000 yen for P,
>
Let x, and X, be quantities of P,and P,. Then, the profit is given by
3x, +4x, objective function (to be maximized)
On the other hand, constraints are
2x, +3x, =5  constraints on quantities available
4x,+5x, =9  constraints on quantities available
X, =0, X,=20  quantities are not negative.
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RIZEHERIRE
BRIBAZK: 3x, +4x,>®K
GESES E

2X, +3%, =5

4, +5x%, =9

%, 20, X, =0

B IRk 3x, + 4x,=k
SEHR X,= -(3/4)x, + ki4

22DFIFRICHIET HEHRD
ZAlEQ, 1).

oFY, WGP FLHEE, HEP,E
1B EET 2D HVERE.
ETMEET-1: LOBIZHEWNT, 2@ EHx, x,ZEA

LT, FERXBNET A TREEXFHEEH =0T
EREIIHEEEAL

E{7A[HE
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Linear Program

Objective function: 3x; + 4x,>max x,

Constraints: R
2%, +3%, =5 ‘
4%, +5x%, =9 {
X, 20, X,20

Objective function 3x, + 4x,=k
Line x,=-(3/4)x, + k/4

Intersection of lines corresponding r_w_"' R

to two constraints is (1,1). RiTR

That is, producing one unit of product

P, and one unit of product P, is the best.

Exercise E7-1: Change the above constraints into constraints by
linear equalities and those of the form variable =0 by introducing
two variables x; and x,.
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WA EREORE

NEDEH TERSN DRI EREE
PNRAERICENTHBRKITH ST DFEMICL-TERS

NBZMEERDERDHTEHBEROEEZRELT HLD
ERDHHRE.

f=FZL, MEEARDERET A TIETASHERHFLIN 2.

U T Ly Rk (Dantzig, 19474)
MEEADIDOOERNSHELT, ZOBEEROFT
BMBEHOENRESNIERICBBTHEVSEEE
BYERL, BEITEL oL EIC, ZOTEAERERLETS.

DUTLVYRETT REMIRES.
VOMZEAOEEND, BMICEFRELVSERIEAL.

BMBRERETSAMICETBETAE, B RER

Algorithm for Linear Program

Linear Program defined by n variables
=>the problem of finding a vertex among those vertices of a convex polyhedron

corresponding to constraints in the n-dim space at which the objective function
is optimized.

Here, notice that if we enumerate all the vertices then it takes
exponential time.

Simplex Algorithm (Dantzig, 1947)
Starting from a vertex of a convex polyhedron, we repeat an operation of
visiting a vertex among its adjacent ones to improve the value of the objective
function. When we cannot move anymore, we are at an optimal vertex.
Simplex Algorithm always finds an optimal solution.
“."Due to the property of a convex polyhedron, there is no vertex

REOGAICITERNMELELT S.
LAL, ERAMICITHEETRL.
S EREE S AR TR S ? |
Khachiyan(1979) D& &
O(nm3L) B fEl D8 A 44 % (ellipsoid algorithm)
n: ZHOEH m:FIHXOELK
L RBEEETHDICHEONIRARDE YK
Karmarker(1984)® A g ;% (interior method)
O(nm25Llog L)BERID 7 LT X Ls
ATTORZ LT X LY RELICETHA
Mirzaian?> DPA(Deepest Peak Algorithm)
FHERER IZOM3n2) & FaR LTV 5203, BB
Megiddo(1984), Clarkson(1986), Dyer(1986)i%
B OMEHEN B LTI 0 5 23,
HIFROEHEIBI L THEE O T V3 XA %5

that is only locally optimal. If we move only in the direction of
IZEET 5. improving the objective function, it always reaches an optimal
39/62 solution. 40/62
SUTLIHREDOME |

Efficiency of Simplex Algorithm

It takes exponential time in the worst case. However,
it is efficient in practice.

Can Linear Programs be solved in polynomial time?
Khachiyan's result (1979)
Ellipsoid algorithm: O(nm3L) time
n: number of variables, m:number of constraints

L: maximum number of bits used to specify coefficeints

Karmarker's interior method (1984)

O(nm?5Llog L) time algorithm

Famous for the application of algorithm patent by ATT
Mirzaian's DPA(Deepest Peak Algorithm)

He claims O(m3n2) time, but the truth is not known.
Megiddo(1984), Clarkson(1986), Dyer(1986):

They propose algorithms which take time exponential in

the number of variables but linear in that of constraints,e,




BRHEMELLTER L TEHME |

FIREPL7: (T2 BT REMERIRE)
NREEMI2ODREENEZNTLE, TNOEDET D
BTEENFETIHEIHEHEL L.

2RJAFETIE, 20D RERESHMT IERDSFET SN
ESMEHES HBELLS.
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Problems formulated as Linear Programs ‘

Problem P17: (Linear Separability)
Given two sets of points in the n-dim. space, determine whether
there exists a hyperplane separating them.

In the 2-dim. plane, the problem is to determine whether there
exists a line separating two sets of points.

linearly separable linearly nonseparable

44162
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In the 2-dim. plane, two sets of points are separable if their associated
convex hulls (the smallest convex polygons containing them) have no
intersection.

A

Linearly separable Linearly nonseparable

FILIY) X LP17-A0:
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Algorithm P17-A0:
(1) Input two sets R and B of points, where n=|R|+|B|.
(2) Construct convex hulls CH(R) and CH(B) for these sets of points.
(3) Determine whether CH(R) and CH(B) have intersection.
If there is any intersection, report that there is no solution.
Otherwise, find common inner tangents and report them as

separating lines. 46/62

Z L) X LP17-A0:
(D22DHREEREBEANTS. 1L, n=|R[+[B].
QERESICHTHMECHR)ECH(B)ERHS.
(3)CH(R)ECH(B) I EEB R A BH DM EIMEHITE.
LB HNIE, RIZENEHA.
T5THIINIE, HBRERERDT, SEERELTHA.

FILTY X LPL7-A0D 5T E BFRS:

WIXAALEFEDT, O(n)FERE.

QD aEtE(EO(n log n)BERE.
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Algorithm P17-A0:

(1) Input two point sets R and B, where n=|R|+|B]|.

(2) Construct convex hulls CH(R) and CH(B) for these sets of points.

(3) Determine whether CH(R) and CH(B) have intersection.
If there is any intersection, report that there is no solution.
Otherwise, find common inner tangents and report them as
separating lines.
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Computation time of Algorithm P17-A0:

(1) takes O(n) time since it is only for input.

(2) takes O(n log n) time for convex hulls.

(3) takes O(n) time to compute intersection and inner tangent lines.
In total, it takes O(n log n) time.

Exercise E7-2:Let n and m be sizes of sets R and B. Represent
the total computation time using n and m. If there is big difference
between n and m, is there any other idea?

. . 48/62
Is there more efficient algorithm?
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‘Algorithm P17-Al based on Linear Programming ‘

Let input point sets be
R={(X1.Y1), - (X Yid}, and B={(Xys1.¥ics1), -+ (X Yo)}-
If there is a line separating R and B, then we must have
y; Sax; + b, i=1, ..., k,
y; Zax;+ b, i=k+1, ..., n
or y; Zax; + b, i=1, .., k,
y; Sax; + b, i=k+1, ..., n.

Conversely, if there is (a,b) satisfying
b =-ax; +vy;, i=1, .., k,
b =-ax; +y, i=k+1, .., n
or b=-ax; +vy;, i=1, ..., k,
b=-ax; +vy;, i=k+1, ..., n
then R and B are linearly separable.
This is a linear program for two variables, and thus it can be
solved in O(n) time. 50/62

fil: R={(1,2), (2,1), 3,1)}, B={(2,2), B3)}D&LZ,

HRISETEIRRE T fRAZETEIRRE2 :
b =-1*a+2, b =-1*a+2,
b =-2*a+1, b =-2*a+1,
b =-3*a+1, b =-3*a+1,
b =-2*a+2, b= -2%a+2,
b =-3*a+3 b=-3*a+3

REMBEET-3: ERICRAT AR ERTR I 5 &ITkY,
ELLDIRMEBEIMENRITAIRERRZ L DA E It &
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Example: Suppose R={(1,2), (2,1), (3,1)} and B={(2,2), (3,3)}.

Linear Program 1: Linear Program 2:

b=-1*a+2, b = -1*a+2,
b =-2*a+1, b =-2%a+1,
b=-3*a+1, b < -3*a+1,
b =-2*a+2, b= -2*a+2,
b =-3*a+3 b=-3*a+3

Exercise E7-3: Determine which linear program has a feasible
solution by drawing feasible regions in practice.
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Shortest Path Problem ‘

Problem P18: Given a weighted graph G=(V,E,c) and two vertices
sand t, find a shortest (minimum-weight) path from s to t.

It is known that this problem can be solved by a famous Dijkstra's
algorithm. It is also formulated as a linear program.
Variables to be prepared:

d; = length of a shortest path from s to a vertex v;.
The length (weight) of an edge (v;,v;) is denoted by c(v;,v;).
Then, the constraints become as follows:

d,=0 (with s=v,)

d, =d; +c(v,v))  foreach edge (v;,v)),

where v; must be different from s.

Objective function becomes

max d, where v,=t.
It can be solve in polynomial time, but Dijkstra's algorithm is more
efficient since it has many variables. S4l62
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Exercise E7-4: Write a linear program corresponding to the graph
shown below.

Assume numbering:
(s,a,b,cdet)
= (V1, Vp, V3, Vg, Vs, Vg, V7)
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Integer Program

Exactly, Integer Linear Program.
Constraints and objective function must be linear as in Linear
Program, but variables must take integral values.

It is a very powerful scheme in the sense that various problems
can be formulated as Integer Programs, but no polynomial time
algorithm is known.

Itis called a 0-1 Integer Program if we may be arbitrary number
of constraints and any coefficients in an objective function, but
values of variable are restricted to 0 or 1. It is known that even
the 0-1 Integer Program is NP-complete. .
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Problems formulated as Integre Programs ‘

Let n logical variables be (Xy, Xy, ... , X;)-
Logical variable x;, or its negation —x, is called a literal.
A clause is a connection of three literals by OR V.
3SAT expression is a combination of clauses by AND A.
F(Xy, X1 Xq)
= (X, VX,V Xg) A% VXV 71Xg) A% VX,V X3)
Truth assignment: assignment of truth value (0 or 1) to each variable.
In the above example, we have
FO,1,1)= (OV—1V 1) A(—0 V1V —1) A(—0V1V 1) =1,
F(1,01)= (1V—0V 1) A(—1 VOV —1) A(—1VO0V 1) =0,
and so the truth assignment (0,1,1) satisfies the expression, but
(1,0,1) does not.
A 3SAT expression is called satisfiable if there is a truth assignment
satisfying it.

60/62
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Problem P19: (3SAT: 3-Satisfiablility Problem)
Given a 3SAT expression consisting of n variables and m clauses,
determine whether it is satisfiable or not, and find a truth

COMBRFIARHIENPTELHEETHS.

BHIEMEELTOERE
ERELEROEEEHIEO, LITRET HHHX
0 =x; =1, integer x;, i=1,2,...,n
HEEHDEE XL 1x EREHT 5.
ZHICET B HIHX
(X, V71X,V Xg) => X + (1)) + X5 21
BITRENHETHHHNXEANDDOR T AT L.
(X3 V%,V X3) A% VXV %) A(TX VX,V Xg) =>
(X, V7,V Xg) => X + (1-%p) + X3 21,
(7%, VX,V %) => (1-%) + X, + (1-%5) 21,

(7% VXV X5) => (1-X,) + X, + X3 1. 6162

assignemt satisfying it if it is.

This problem is a typical NP-complete problem.

Formulation as an Integer Linear Program
Constraints for logical variables to take only 0 or 1
0 =x; =1, integer x;, i=1,2,...,n
Represent the negation —x; of variable x; as 1-x; .
Constraint associated with each clause
(X, V71X,V Xg) => X + (1)) + X5 21
Then, constraints for clauses are connected by putting AND
(X3 V%,V X3) A% VXV %) A(TX VX,V Xg) =>
(X, V7%,V Xg) => % + (1-%,) + X3 21,
(7%, VX,V —xg) => (1-x) + X, + (1-X5) 21,
(7%, VX,V Xg) => (1-X)) + X, + X3 =1 62162
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