Observation of the definitions of the classes...

Def: Class P (Chapter 5)
Set L is in the class P <
There exists a poly-time computable predicate R such that
for each XEX*, XELEOR(X)

Def: Class NP (Def 5.2)
Set L is in the class NP &
There exists a poly g and a poly-time computable pred. R s.t.
for each xEX*, xELS IwE X' :|w|=q(IX)[R(X,w)]

Def: Class co-NP (Theorem 5.5)
Set L is in the class co-NP &
There exists a poly g and a poly-time computable pred. R s.t.
for each XEX", XELSVWE 71 \w|=q(|X)[R(x,W)]

HERISARBOEREZHET HE. ..

VI APDER(GSE)
EABLMNYSRAPIZAS &
LT %9 LIEA BRI ET E AT AR R BRAVETE:
& X ETTXELER(X)

DSANPDEE(EES.2)
EBLBITANPIZAS &
LT &9 21BXqL SIEXBRE T E AT 4ER ERNFE:
& x ETTXELS TwE 5w =q(X)[R(X,W)]

V5 Rco-NPDEZR(EHES.S)
EABLMNYSRco-NPIZAD &
LT E#-T SEXqE S EX B T A 4EBERNFE:
£ X ETTXELOVWE Z*: (W= q(X)[R(X,W)]
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Chapter 6. Analysis on Polynomial-Time 5 = "
P ysis on Poly (%65 SEABRIHETEMEOHH |
Computability
6.1. ZIRXFEETEIREE
6.1. Polynomial-time Reducibility
6.1
Def.6.1: _ ALBERERDEELTS.
Let A and B be arbitrary sets. (1) B3% h: A>B: ZIEXEFHEIETT(polynomial-time reduction)
(1) function h: A>B: polynomial-time reduction (@) h [FT DI AD LB %K
(a) h is a total function from X* onto =* &) b)xeZ#[xe Ao h(x) e B]
| (b) xeZ*[xe Ae>h(x)eB] () h [T BB B AL
(c) h is polynomial-time computable.
_ o . () ADBBAD S ER BB LA FET BEE,
(2) When there is a polynomial-time reduction from A to B, AlEB %18 3 )% JT Al BE &L VS (polynomial time reducible).
we say A is polynomial-time reducible to B. ZDEE, RDISIZEL:
Then, we denote b P
o< B A<’ B
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6.2.Completeness based on Polynomial-time Reducibility

6.2.1. Definition of Completeness and its Basic Properties

Def.6.2: For a class C, if a set A satisfies the following conditions,
then it is called C-complete (under Sa)

(a) VLeC[L <PA]

(b)AE C

Note: Sets satisfying the condition (a) are called C-hard.

[6.2. ZIEABRETTREEICEI(REE |
621 REMDEBLEDEAWEE
EE6.2 HEBISRCAHL, EEANRDEHEH-TEE,
FNE(DOTFTOCREENS.
(a) VLeC[L <PA]
(b) Ae C
Wl S EB-TESXCEE
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EXPC ={L: L is EXP-complete}

NPC = {L:Lis NP-complete}
Then, we have the following theorems.
Theorem 6.5.

() EXPCAP =¢

(2) EXP —(EXPC UP)# ¢

EXP

Theorem 6.6: Assuming P # NP
(Y NPCOP =§
Q) NP —(NPCY P)# ¢

/NP

NP
}NPF\ co-NP
P
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EXPC ={L: LIXEXP-5E &}
NPC = {L: LIZNP-5E£}
EFHE, ROFEMNEYILD.
TEFE6.5.
() EXPCAP =6
(2) EXP - (EXPC UP)# ¢

EXP

EE6.6: P = NPEFET DL
(HWNPCOP =¢
Q)NP —(NPC YP) %

/NP

NP
}NPF\ co-NP
P

6.2.Completeness based on Polynomial-time Reducibility \

6.2.1. Definition of Completeness and its Basic Properties

Def.6.2: For a class C, if a set A satisfies the following conditions,
then it is called C-complete (under Sa)

(a) VLeC[L <PA]

(b)AeC

Note: Sets satisfying the condition (a) are called C-hard.

Theorem 6.4. A: any C-complete set ‘ Once you have a
For any set B we have complete
(1) A<® B B is C-hard. ‘

blem,
(2) A<, B ABe C-> Bis C-complete. e

can use it as a
tool!!

[6.2. ZIEABRMETTREEICEI(EEE |
6.2.1 REMDERLEOEFMHME

EE62: SHEEISRCIHL, EAANRDEREH-TLE,
ENE(SSOTFT)CREENS.

(a) VLeC[L <PA]

() AeC

WE EERLTESLC-RE.

THE64 A FEDC-REES ‘

TRTOEEBIZHL, HBRREN
(1) A <°B >BlIC-EE. SELMETHD
(2)A <[B AB eC~> BIEC-5E2. ‘ Zehhhotzin,
ZTNEERELT
x5!

6.2.2. Proof for completeness v

Two ways to prove (AP-)completeness
(1) show *“for all L’ according to definition
(I1) use some known complete problems

Ex for (I) : Theorem 6.7,
Theorem 6.9(*= Cook’s Theorem; simulate TM by SAT)

Basically...
1 1. For any program in standard form,

Easy to handle since,
e.g., 3SAT has a
uniform structure.

2. simulate it by SAT formulae
—pretty complicated and tedious

Ex for (II): Example 6.4(3SAT<; DHAM), Theorem 6.10, ...
DHAM is N'P-complete for general graphs

DHAM is N'P-complete even for planar graphs
DHAM is NP-complete even for graphs with max degree=3
DHAM is AN/P-complete even for bipartite graphs ...
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6.2.2. SE2 DI

NP LMD &
() BHEBYIZ[TRTOLIZDWVTEY
(1) I TICRETHHEN > TWDREEEFIET S

OHDB: EIR6.7, EIR6.9(= Cook D FEE(SATTTMZE L))

Mrevr b o W ERMICE...
ISATRER. R |\ | sEsmpcsresnssasExT
M= D THKL

2. FRTSLOBIEEHRERER CHMT S
Py —ETCHRE(FRHAL D)

(D I: $516.4(3SAT <, DHAM), EH6.10, ...
DHAMIZ—#2 DY 57 L TNPES

DHAMIFZEEY S7IZRELTENPRES
DHAMIFMER DR =3 ICREL TINPREE
DHAMI2E88T STICBREL TENPREE...
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Theorem 6.10 The following sets are all AN/P-complete:
(1) 3SAT, SAT (reduction from ExSAT)
(2) DHAM, VC (reduction from 3SAT)
(3) KNAP, BIN (reduction from 3SAT and KNAP S; BIN)

(I) Polynomial time reductions from A’P-complete problems:
1. 3SAT <P vC
2. DHAM <\ DHAM with vertices of degree =<5

Vertex Cover: a vertex set that contains
at least one endpoint for each edge
Hamiltonian cycle: a cycle that visits each vertex exactly once

Note : DHAM remains A’P-complete even if max degree 3.
But it is polynomial time solvable if max degree 2.
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EH6.10: LTFIZHIFEEEIFTATNP-EE
(1) 3SAT, SAT (EXSATA 5 M3E TT)
(2) DHAM, VC (3SATM 5 DIETT)
(3) KNAP, BIN (3SATANS D& FEEKNAP <;BIN)

() NPFEE AL > TSR LD SR K= IT:
1. 3SAT <P VC
2. DHAM <} TR D REHE < 5I=HIESN=DHAM

Vertex Cover: TRTDEAD, it —HADTEREELES
Hamiltonian cycle: ¥ R TDTERF—E T OESHE

HFET: DHAMIZRH S 2R3 THENPEZE,
& R212E S EX B At E Al RE,
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Theorem 6.10(2) : VC is A’P-complete \

[Proof] Since VC € AP, we show 3SAT < VC.

For given formula F(X,,X,,...,X,), we construct a pair <G,k>
of a graph and an integer in polynomial time.

There is an assignment that makes F()=1
G has a vertex cover of size k

Construction of G (F has n variables and m clauses):

1. add vertices X;*,X; and the edge (x;",x;") for each variable X; in F

2. For each clause Cj=(I;, VI, VI;;) in F, add vertices I;;, Iy, I;; and
three edges (Iip.l), (lo;lia), (liz.iy)

3. add the edge (l;;,x;") if the literal I, is X;, or add (I;;,x;") if it is —x;
for each clause C;

4. letk=n+2m
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EH6.102) : VC [ NP E&RIRE

[RFBA] VC € NP DT, 3SAT < VC THAHZEETHIELLY,
HEX FX X, X,) BNEZDNI=ET S,
FALLUTOEGER-TI57EBRBDHEG, kA’
ZEAKETHERTESLETRT

FZUTRENANFETHOCH YA XKD TEAHEBEFD

GOER(FIInEHMIEET B):

1. FORZEHH x IZRL.TBR X" x & B x)EMASD

2. FOZFIEC; VI VISR L TR Ly, by, iy £38(051),
(I 1), (g )ZEMZ S

3. HECOUTII I, Y x DEEFD(,,.x1) & —x DEEFID
(%) ENZ 5,

4. k=n+2m

There is an assignment that makes F()=1 4/11
&G has a vertex cover of size k

Construction of G (F has n variables and m clauses):

1. add vertices x;",X;" and the edge (X;*,X;") for each variable X; in F

2. For each clause Cj=(I; VI, VI;;) in F, add vertices I;;, Iy, I;; and
three edges (Iip.lip), (i, liz). (z.kip)

3. add the edge (I;;,x;") if the literal I;; is X;, or add (I;;,x;) if it is —x;
for each clause C;

4. letk=n+2m

Ex: F(X),X0:X50%0) = (X VX VX3) A (77X, V%3 VX)) A (X V71XV Xy)

k=4+2x3=10

FE1sd BRI UAREET HOCHY A RO AL HEERD

GCOEM(FIInEHMIELT B):

l. FOBEH X ISRL.TER X" x & B X)EMAS

2. FG)%—IECJ:(I“VIiz\/IB)l:*ﬂA TER By, L, iy E38(15,,1),
(Ii27||3)’ (I|3’Iil)jé7]u7-{-é

3. BCOUT IV, b x DEEFID(,x7) . —x DEEE
B(ly.x) ZEINA S,

4. k=n+2m

Bl F(X) XaoX3Xe) = (X, VX VX) A (7%, VX VXA XV %5V Xy)

k=4+2x3=10
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It is easy to see that the construction of G from F can be done in
polynomial time of the size of F. Hence, we show that...
There is an assignment that makes F()=1
<G has a vertex cover of size k
Observation:
From the construction of G,
any vertex cover S should contain
Hence we have |[S| = n+2m =k.
Ex: F(X)Xp.X3.%,) = (X VX VX) A (7%, VX3 VXA (X V=%V X,)

at least one of X;" or X;”
at least 2 of 3 vertices in C;

k=4+2x3=10
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GO, EZoNT= F 5D F DY A XIS EX R
THEBE , LIS TUTEREILLLY:
FZ1IZT 2EUMNFET DOCHT A RKDTEAHEEZED

B K DEEBNEED
£2T 5| = ne2m =k TH 5, g

Bl (X Xp.X3,%,) = (%, V% VXA (X VX5 VA XV 7%V Xy)

k=4+2x3=10

If there is an assignment that makes F()=1, o1

G has a vertex cover of size k
Xt ifx=1

1. Put{
X if X;=
2. Since each clause Cj=(l;;,lip,l;3) is satisfied, at least one literal,
say l;;, the edge (l;;,X;,) is covered by the variable X;,. Therefore,
put the remaining literals (l;,,l;;) into S.

= From the|Observation, S is a vertex cover of size k.

} into S for each X;.

Ex: F(X)X0:X50%0) = (X VX V X3) A (77X, VX VX A XV 71XV Xy)

k=4+2x%3=10

FEICT BEILUAEET 500 YA RO AAHEEED O

NP o x=1725 ' &#SICAND
L ENTROTR X ’5‘{ X=0%55 X ESIZ AN
2. FNENDIEC=(;, .l EFEBINTNEDT,
RIEIDDUTIIILIDIZDNTIIE S EDRE DA, .x,)
1E X, ITE>THBESIN TS, LIzAo T, Th LS D
ZODYTII(l)E S ITAND,

= BB LY. STV A RKOTERBEIHD,

Bl F(X) XpoX3Xe) = (X VX VX)) A (7%, VX3 VXA XV %5V Xy)

k=4+2x3=10

If G has a vertex cover of size k, there is an assignment s.t. F()=1  7/11

1. From|Observation, a cover S contains 2m vertices
from the clauses, and n vertices from the variables.
2. Thus the cover S contains exactly one of X;* and x; and
exactly two literals of a clause C;.
3. Hence each clause C; contains exactly one literal I; which is not in S,
and hence incident edge should be covered by a variable vertex.

= The following assignment satisfies F: [ );:i(l) g);r]l::ss J

Ex: F(X).Xp.X3.%,) = (X, VX VX)) A (7%, VX3 VXA (X V%3V X,)

k=4+2x3=10

QED.

CAHA XKD EE MBS FE1I2T 2B 4R BETS |

1. 82 &Y, HESITE,S2ME, EHMONMEDEREED,
2. ELITREHXITDONTIEX DX D—FH LA
BHECIZIOVWTIFELIE2DDTERLASICEL TEMNTERL,
3. FOTHIEACGIEFSITEFTNAVITIIEETH.
RIS BEY 2RI N EBESN TUOEITHIEESAL,
X MSIZEFENDED x=1 S
N ( Oyl }amuu;r;%aﬂeﬂmo

Bl F(X) XpoX3Xe) = (X, VX VX)) A (7%, VX3 VXA XV %5V Xy)

k=4+2x3=10

QED.




Unsatisfiable example:

F(X1:X05%3) = (X VX VXD ATV 7%,V —350) A (X V X3 V X5)
A (X V%,V —X3)

When F is unsatisfiable, it contains at least one clause such that each
literal is not covered by a vertex. So, Vertex Cover should

contain three literals in the clause. Hence any vertex cover has size
at least k+1.
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FERTELL M

F(X1:X05%3) = (X VX VXD ATV 7%,V —350) A (X V X3V X5)
A (X V%,V —X3)

FERTEHLFTIE, EDYTIIBERTHN—INTLVEL
EABTFEET D, COEDYTFILIE3DESE Vertex Cover (2
ANETBEHBIL, Ko T Vertex Cover DY A X k+1A EIZH 5,
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Theorem: DHAM on a directed graph with max. degree=5
(abb. DHAM - ) is N'P-complete degree: the number

[Proof] of edges incident to
Since DHAM € NP, DHAM.; ENP. a vertex
We DHAM <! DHAM_ .

Idea:

Replace the set of “arcs to v”
and the set of “arcs from v”
by a right ‘gadget’.

A Hamiltonian cycle through v
on the original graph
corresponds to the
Hamiltonian cycle through v
on the resultant graph.
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FE: R¥ERSOERY ST LD DHAM & NP ELR%E

[fEBA] (LD EEDHAM . (EHEEET %)

R ]ﬁﬁ(:1¢
DHAM_ ; BAPIZIE T 3D 1%. DHAMAIAPI=| BT DDA

B3I noBHB, LIzh>TELMEERE LKLY,
DHAMS] DHAM_. #57,

FATT:

REBIADTARV(E)D
(A-TKBLEE)E
(HTLKIEE)ZAE
D gadget TEEHZ D

ERTVEIELITES
AR EERTVEIET
I+ EAERRIERET 5,

Theorem: DHAM on a directed graph with max. degree=5 1o

(abb. DHAM _ ) is A’P-complete
Idea: < d >

— \X/ o |

Up to down via cycle height: O(log d;)

T //A\ H%j number: O(3,)
< d, >

[Proof (sketch)] \
For each vertex v of degree = 6, replace the edges around v
by the gadget.
1. Ifthe original graph G has n vertices with m edges, the
resultant graph G’ contains O(n+m) vertices with O(m) edges.
Hence the reduction can be done in polynomial time of n & m.
2. Each vertex in G” has degree at most 5.
3. G has a Hamiltonian cycle < G’ has a Hamiltonian cycle. QED.

T REEASOERTST LD DHAM E VP =ameE | !

TATT:

RAUR: o
- BEABELNDT =<: O(log dy)
- BIRAITRIMSS5

| {E%%: O(d)

[REBABLE)]

BZont=057CHREBMNULDEFNFNDIERICADILE
H30% LEED gadget TEEHZ 5,

1. TOTSIGHnIERMIBTHOT-HD, gadget TEEHZ =
HEDYZIC 1L O(n+m)IEHM O(M)iBEHES, Lizhi>TL
BROETIICHOREED LEXFHTAEE,

2. FEDTRTOTERITREBUII-NZN5TH S,

3. GANILVRABELDOC ANV BBERD  gpp,




Many natural hard problems are either
* Poly-time solvable, or
* NP-hard

Addition (BFE()

* Ryuhei Uehara, Shigeki Iwata:
Generalized Hi-Q is NP-complete,
The Transactions of the IEICE, E73, p.270-273, 1990.
« Peisen Zhang, Huitao Sheng, Ryuhei Uehara:
A Double Classification Tree Search Algorithm for
Index SNP Selection, BMC Bioinformatics, 5:89, 2004.
« Sachio Teramoto, Erik D. Demaine, Ryuhei Uchara:
Voronoi Game on Graphs and Its Complexity,
2nd |EEE Symp. on Computational Intelligence and Games, p.265-271, 2006.
 Ryuhei Uehara, Sachio Teramoto:
Computational Complexity of a Pop-up Book,
4t International Conference on Origami in Science, Mathematics, and Education, 2006.
* Ryuhei Uehara:
Simple Geometrical Intersection Graphs,
3rd Workshop on Algorithms and Computation,
Lecture Notes in Computer Science, Vol. 4921, p.25-33, 2008.
« T. Ito, E.D. Demaine, N. J. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, and Y. Uno:
On the Complexity of Reconfiguration Problems,
19 Annual International Symposium on Algorithms and Computation,
Lecture Notes in Computer Science, Vol. 5369, p.28-39, 2008.

Schedule(3&Y D F E)

* 10/28(Thu): Last class (AT FREDEE)
— Course Evaluation Questionnaire (2% 7 >4~ —)
— Office Hour:
» Comments & Answers on the report
* Return your reports

+ 11/ 1(Mon): mid-term exam (9 il 58 5&)
— 40 points xTextbook, Copy, Printout,...
— You can bring your own hand-written notebook

(FEE/—bOAHFFLAHT)

— Lesson 3~Lesson 6 (i8#&3~i8%6)




