FILTIX LR

Theory of Algorithms

EFMEE &5
Rr—) 5%

1/32

FILTIX LR

Theory of Algorithms

Lecture #11
Scaling Algorithms

2/32

ERMEF AL THEZNERIBIDDAE.

RIREP29: (RIGFEAE)
DIZEDBREHEE DT I7GE I AsNEZbNT-LE,
REASHOCDIDTRTHDTEA~NDRERBEEZRO L.

RERBRABEICOVTIIFIMIRNSOT LTV LS.
TEs#%En, BEEnETHEE, TR Ty FE—TZ2ANSL,
H AP ARZiEIXO(m + n log n)BEE CRITTES.

DOEHADNTRTERTHIHEE, MEERETEIN?
FTRTODOEHZEFRICLI-MEZBRIIHENT,
ZTORERVTTOMBEZH RSB

3/32

Scaling Algorithms

Algorithms for speeding up using integral property

Problem P29: (Shortest-path problem)
Given a positively weighted graph G and one vertex s, find all
shortest paths from s to all other vertices in G.

The Dijkstra's algorithm is famous for the shortest-path problem.
For a graph with n vertices and m edges, the Dijkstra's algorithm
can be implemented in O(m + n log n) time using Fibonacci Heap.

Is any speed up possible if every weight is integer?
Solve the problem after halving every weight recursively, and

using the solution solve the original problem efficiently.

4/32

BEEBRERODL IR NI

0) TRTDTEAVIZDNTdist[v]=& T 3.
(1) dist[s]=0&9 B (slEIR =) .

Q) I RTHDIERET—ILPIZEZ 5.

(3) while(PASZETAELY){

@) Phdist|DENR/INDTESRVERYET.
(5) ulc¥—9%DI+5.

6) for(R—IMDNTLVELUDBEETESEY)
7 if(dist[u] + leng(u,v) < dist[v])

) then dist[v] = dist[u] + leng(u,v)

©}

dist[u]: I msHOTERuETCORERBORSEEZ HEF.

leng(u,v): 2TERu, ViDL D EH (RE).

T—IP: BERDEREEZD-HDT—HHEE.
dist[|DEAR/PDIEROIY L,
FEEDERVIZDVTistv]DEEZFH> T

5/32

Dijkstra's algorithm for finding a shortest path
(0) For each vertex v, let dist[v]=co.

(1) Set dist[s]=0 (s is the source) .

(2) Store all the vertices in a pool P.

(3) while(P is not empty){

(4) Take a vertex u with the smallest dist[] out of P.
(5) Mark u.

(6) for each unmarked vertex v adjacent to u

(@) if(dist[u] + leng(u,v) < dist[v])

®) then dist[v] = dist[u] + leng(u,v)

)}

dist[u]: array to keep the length of a shortest path from s to u.
leng(u,v): weight (length) of an edge between u and v.
Pool P: data structure to maintain a set of vertices.

extract a vertex with the smallest dsit[] value, and

decrease dist[v] value for any element v. o

IfE:

FILT) X LOEE:

(1) s&<—% : dist[a]=5, dist[b]=7

(2) a&<—7% :dist[c]=11, dist[d]=9, dist[f]=15

(3) bEY—%:dist[d] R Z, dist[e]=11

(4) d&ET—7 dist[c] R E, dist[e] T E, dist[{]FE
(5) c&ER—7 : dist[f]=14

(6) ex<—7 :dist[g]=19

(7) &< —7 . dist[g]=18

(8) g&~Y—Y #T.

7132

Example:

Behavior of the algorithm:

(1) Mark s: dist[a]=5, dist[b]=7

(2) Mark a:dist[c]=11, dist[d]=9, dist[f]=15

(3) Mark b:dist[d] no change, dist[e]=11

(4) Mark d:dist[c]no change, dist[e] no change, dist[f] no change
(5) Mark c:dist[f]=14

(6) Mark e:dist[g]=19

(7) Mark f: dist[g]=18

(8) Mark g:stop.

| FALYRNSEOBE |
FAOANTHETIE, TRTODE—ELNASAL.
(ERTSTDBAIZE, FDETAEAOHRAIZ—E)

T—IWPERFTIT—HEEIC &I EEROEL
T—ILPICERESNZEF

(A) dist[|DENFR/NDTEROEYHL, T,B5fE
BYEEDERVICDOLTdist[vIDEZEFEST . TpF5fE

(A)DFEEZEE, B)DIREZMEIRYRT MDD, £A4TE
O(nT,+mTy)B%

(1) F-APEEALESITERT 554

T—IL DM Sdist(|DENR/PDTEREESDIZOMN)D
EREIAH MDA, dist[vIDEEEET B0 (E0(1)ERH.
L1zh>T, & TIEOMT,+mTy)=0(n*+m)iFHE

9/32

| Efficiency of the Dijkstra’s algorithm

In the Dijkstra's algorithm every edge is checked only once.
(each edge is checked only for each direction for undirected graph)

Difference of computing time for data structure for pool P
Operation required for the pool P
(A) extract a vertex with smallest dist[], T, time
(B)decrease dist[v] for any element v. Ty time
Repeating operation (A) n times and (B) m times, it amounts to
O(nT,+mTy) time.

| (1) Simple array for pool P ‘

It takes O(n) time to choose one with smallest dist[] in the pool,
but it takes only O(1) time to decrease dist[v].
Thus, in total it takes time O(nT,+mTg)=0(n?*+m).

10/32

(2 FT—NPEFH 2 BRATERT 282 |

(A) dist[|DEHL RN DTEREESDIZO(log n)DEFAE
(B) dist[v]DEZZEE § 5D H0(log n)EFE.
L7zh>T, 2K TIEOMT,+mTy)=O(nlog n+mlog n)
=0((n+m)log n)RRE.

(3) T—1LPEF4RFvFE—TTERT 558 |

(A) dist[|DEN R/ DTEREE SDIZO0(log n) D EFAE
(B) dist[v]DEZ B ST ##/EIE 1 B Z-YO() BRI TRIT
ATHE.

L1zh>T, £ TIEOMT,+mTz)=0(nlog n+m)RFRE.
(f=f2L, STEBFEOMBEITIEEo LETIZE D)

4R FvFE—T :Fredman and Tarjan, 1984.

BB, A= —MICRLBRULDIX IR yFeE—T2E5158
MDO(m +n log n)FEfE. ChERETEEHN?

11/32

| (2) Balanced Binary Search Tree for Pool P ‘

(A) O(log n) time to choose a vertex with smallest dist[]
(B) O(log n) time to decrease dist[v].

In total, it takes O(nT,+mTy)=0O(nlog n+mlog n)
=0((n+tm)log n) time.

| (3) Fibonacci Heap for pool P |

(A) O(log n) time to choose a vertex with smallest dist[]

(B) O(1) time in average per one operation to decrease dist[v].
In total, it takes O(nT,+mTg)=0O(nlog n+m) time.

(the analysis is based on amortization)

Fibonacci Heap: Fredman and Tarjan, 1984.

The best data structure in the order is the one using Fibonacci heap.
It takes O(m + n log n) time. Can we improve it?

13/32

(BOEAHMnOEREUT OBERTHIIEEELTEE |

H A ZAM=0(m)DEFNQZALTIERNT—I/LEEH.
Fhbs, BHEZRQIK]IL, distfvI=kTHIIEA~D
RAVEEEZ YR DEEEEIREL TS,

1 23 45 678

Speed up is possible if edge weights are integers of O(m/n) ‘

We implement a pool of vertices using an array Q of size M=O(m).

That is, an element Q[k] points to the head of the list of pointers to
vertices such that dist[v]=k.

1.2 3 45 6 7 8
di;t 315(0|8]| 2|57 dist| 3]5|0| 8| 2|o| 5|7
N— * * * mark| * * *

Q YRMLODOELE Q location in
107 1 [thelist
2 [BE, dis(HBID 2 [To choose a vertex with
301 EEENEEIL Y 30 smallest dist[] it suffices
4[] XhQE%?ﬁl:fE 4[] to scan the list Q in order.
5 FEHEHFEND, 1E 5 Thus, it takes O(1) time
6L 1 Bt LJE?&B#FE%. 6] per each operation.
7 L8 A oA EEREY R 7 doubly linked list
8 [=714] 13/32 8 [14/32

dist1 DB EICEREER DT —SMBE]

1. distvI=k TH BT XA TOIERvIEFIERQ[K] TELEE
fEESNEYRMIBZON TS,

2. YRMEMAMYRNMED T, fiESZHONIE, FAD
HIfrE EHEFETTES.

3.FEEI—IINTVEWRTERVIZDOWNT, [HERVvASQT
BEINDYRREADRAL2EF>THL

(A) dist[|DEH RN DTE A% R SUR1E (L B E KB,
(BfZQD LZBFIZHEL, RAnullTHRULRA 4%
RO TEN. F=, dist[|O&R/IMEEEERI#EMLT
LS, BRYELY.)

(B) dist[v]DEZZEE I 5D L TE $bFMH.
(TERvALDRA A% WU-TQTEET B A L Tdist[v]
DIEZHIBRL, distvIOBEFH SN ELELISFICIEA)

L1=p3>T, £ETIEO(M+nT,+mTg)=0(M-+n+m) .

15/32

Data Structure to keep vertices for dist[] values |

1. Every vertex v such that dist[v]=k is stored in the list whose
head is pointed by the array element Q[k].

2. Since the list is doubly linked list, insertion and deletion are
done in constant time once their positions are specified.

3. For each vertex v which has not been marked yet, a pointer
from v to its position in the list maintained by Q is stored.

(A) Constant time required to choose a vertex with smallest dist[].
(It suffices to scan Q monotonically until we find the first
non-null pointer. Also, there is no backtrack because dist[]
monotonically increases.)

(B) Constant time required to decrease dist[v] value.

(It suffices to delete the value of dist[v] following the pointer
from the vertex v and insert the updated value of dist[v] at an
appropriate place in the list.)

Thus, in total it takes O(M+nT,+mTg)=0O(M+n+m) time. 1632

FE12-1: nfADTEEEMADEHDELMNSEDTZ7E1D0D
JERsNEZoNTLE, BOEANT A Tm/nDEHELUAD
EBHLGSIE, EOT—2EEZAVSLE, sHhbDRERFIREE
[XO(n+m)BERE CREK S EMTES.

St s S IEEDTEAF TOREREEE 2n-1R0DBLA
BOEL. WO EH FOm/M)EMD, FEZBEORES(TOm).
LI=AoT, EOT—HEEIBERATE, BIQDH A AME
M=0(m)fZH\5, XD FHEFFHEIXO(n+m). SEER#E

m/nDERELYRELEAZHDILHEFEELTE, RERKBD
RENEDTBEEIZDONTEM=0m)LLRAES, ZILTYXLIE
& FAETEE.

DOEHNDEMICHARTIEREICKEN -V, RERROE
SHRM=0M)ZBZDEEIXEFITE?
A=Y G 7ILITIVXLDORA

17/32

Theorem 12-1: Given a weighted graph with n vertices and m edges
and a vertex s, if every edge weight is an integer within a constant
factor of m/n, the shortest path problem with respect to s can be
solved in O(n+m) time using the data structure described before.

Proof: Any shortest path from s to any vertex passes through at most
n-1 edges. =edge weight is O(m/n), so lengths of shortest paths are
O(m). Hence, applying our data structure, the total time is O(n+m)

since the size of the array Q is also M. Q.E.D.

Even if there is an edge of weight larger than a constant factor of

m/n, the algorithm can be applied if the length of any shortest path
is bonded by M=O(m).

What about the case in which edge weight is much larger than
the number m of edges or length of a shortest path exceeds
M=0(m)? Use of Scaling Algorithm

18/32

[RT—UoTEIcE I BERERE |

ATV ZDOEHE2TE>THIVIETTEHRIL TSI LIC
Ko THE/NSh R EREEEBIRIZHEC
BERAVETORERBORIZ2ELIZLDEdist[vIET 5.

e
b 0
TDYT57 o Y R

RSN T-RREIC I 56
2fELTRLIRELTES

19/32

Finding Shortest Paths Using Scaling Algorithm ‘

Step 1:Recursively solve the shortest path problem reduced by
dividing each edge weight by 2 and rounding it off.
Let the doubled length of a shortest path to each v be dist[v].

original
graph
[3] [5]
Use the solution to the reduced problem after

multiplying it by 2 as an approximation solution
20132

fENENT-RREICx T 5fF
2fFELTRLIRELTED

2
O g YEN2 8 [CoTAbAI-IEEE
4 dist[]&F 5.

21/32

Usefhe solution to the reduced problem after
Itiplying it by 2 as an approximation solution

0 "5~ 2/[8] N2 8" [1B] The distance obtained here
4 is dist].
[6] [10] 22/32

AT9T2: & (u,v)DEHleng(u,v)ZRDEIIZER:
distlul<distvV]&5 (L, ZDEH%E
leng'(u,v)=leng(u,v)+dist[u] —dist[v]

Iz

o

Step 2:Modify the weight leng(u,v) of each edge (u,v) as follows:
if dist[u]<dist[v] then change its weight to
leng'(u,v)=leng(u,v)+dist[u] —dist[v].

24/32

ATvT3 IBOEAEERESNI-ELZMHEE, EEREFTORE
BRBORIZEist[1&ET 5.

CORERE I ERIEIC
HIRESITHS

1 [

COTSITNEHFDOEAE2TE>THIVIETILED
AORETHIND, COTSTTORERBRORSITIDH
EBALD. S>LOBRBEMT7ILTIXLIAERS.

AT T4: ZTERICDOVNTist[|DELdist[|DIEZMZ L D%
dist[l&L, SNEREMGEERELTHE .

25/32

Step 3:Solve the problem resulting by changing weights. Then,
let the length of a shortest path to each vertex v be dist'[v].

This distance corresponds
to rounding error.

1 [

Since the weight of the graph is rounding error in dividing weight
by 2, the length of a shortest path in this graph does not exceed
the number of edges. =>We can apply our algorithm.

Step 4:For each vertex, let the sum of dist[] and dist'[] be dist[].
This value is reported as the final distance.

26/32

., 8
0 gmsme

7 (] RiagmA -

Final result and

7] i) Shortest path tree o

T X LP29-A0: (R —YL T PILTY X L)

(WELDEHAE2TE>THIYIETTREILT S LI

FoTHE/NESh-RERREEZBIRAIZHE

FERAVETORERBEORIZ2{ELI-LD%dist[v]ET 5.

2) BBW,V)DEHleng(u,v)ERDKSIZEE:
dist[u]<dist[v]iZ5I1E, ZDEH%
leng'(u,v)=leng(u,v)+dist[u] —dist[v]

ICER.

Q) IBDEHEERIN-ELEE, FERAFEFTORE

BEBORIEdist[1ET 5.

@) BIERICDVTist[|DEEdist[|DEZE MR =2 DE

dist[JEL, CNEREMIEIERELTH .

DOEHDRKEENET HL, #2YIRLEIZKILO(og, N)E].
Q)@ DREIFOMFFETTESL LS, 24 TIE
O(m log, N)BFfE &4 5.

29/32

Algorithm P29-A0: (Scaling Algorithm)

(1) Recursively solve the shortest path problem reduced by

dividing each edge weight by 2 and rounding it off.

Let the doubled length of a shortest path to each v be dist[v].

(2) Modify the weight leng(u,v) of each edge (u,v) as follows:
if dist[u]<dist[v] then change its weight to
leng'(u,v)=leng(u,v)+dist[u] —dist[v].

(3) Solve the problem resulting by changing weights. Then,

let the length of a shortest path to each vertex v be dist'[v].

(4) For each vertex, let the sum of dist[] and dist'[] be dist[].

This value is reported as the final distance.

Let N be the largest edge weight. It is iterated O(log, N) time.
Since the operations (2)-(4) are done in O(m) time, it takes

O(m log, N) time in total.
30/32

HEMEPL2-1: BHIQEAW T —4EEX AL TEA MRS Exercise P12-1: Implement the Dijkstra's algorithm using the data

DT INT)ALERES & structure using an array Q.

EEREPL2-2: 0VERULEDEADESZTI2OLTTILTY Exercise P12-2: Verify behavior of the algorithm for a graph with
X LOEMEEREM O &. at least 10 vertices.

BEREP12-3: ZCTHRALERAY =) I 7T XA Exercise P12-3: Prove that the scaling algorithm described here
FOTELLENREDZLLHAE L. certainly finds a correct solution.

31/32 32/32

