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Most of practical problems seem to be intractable.

(1) Given a weighted graph, if every weight is positive, a shortest

path between any two points can be solved in polynomial time.

(2) Since the problem of finding a shortest tour visiting all the
vertices in the same situation is NP-complete, it seems to be
intractable (Travelling Salesperson Problem).

(3) Even in an unweighted graph, the problem of determining if
there is a closed loop visiting every vertex exactly once is also
NP-complete (Hamiltonian cycle problem).

(4) The problem of finding a shortest simple cycle (a path visiting
every vertex exactly once) in a weighted graph can be solved
in polynomial time if negative weight is not allowed, but it is
NP-hard if negative weight is allowed.

(5) The problem of finding a longest simple path in a graph is
NP-hard even if the graph is not weighted (longest path problem). -
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Necessity of approximation algorithm

Many practical problems are NP-hard and so it seems hard to solve
them. =»substitution by approximate solution

Then, it is important not only to find an approximate solution but
also to guarantee the performance ratio of approximation.

Performance ratio of approximation and
definition of approximation ratio

Consider an optimization problem of minimizing an objective
function. For an optimization problem P,
S: a feasible solution  value of S : val(S)
Opt: optimal solution its value : val(Opt)
Performance ratio (approximation ratio)d= val(S) / val(Opt).
(it is defined as val(Opt) / val(S) for maximization problem)
$-approximation algorithm=approximation algorithm with
performance ration at most &

Here, dmust be independent of an input size. o4
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Relative errore= |[val(Opt) — val(S)| / val(Opt)
Approximation algorithm of finding an approximation solution
with relative error at most e= (1+ €)-approximation algorithm
emust be independent of an input size, too.
Theoretical interest:
To find a (1+ €)-approximation algorithm for an optimization
problem or to show that it is impossible.
Polynomial-Time Approximation Scheme (PTAS)
a (1+ g)-approximation algorithm for an optimization problem
with computation time bounded by a polynomial in input size
Fully Polynomial-Time Approximation Scheme (FPTAS)
a (1+ g)-approximation algorithm for an optimization problem
with computation time bounded by a polynomial in input size and 1/¢

Of course, polynomial-time approximation scheme does not always
exist for any optimization problem. In some case there is no
approximation algorithm with constant approximation ratio.

RIREP33: (Fvy Ty IRIRE)
nfBDREWo(i=1, ..., n)IZHFT 2 ESw LA {Ey, TvTHvID
HIREECHEAONTI-EE, YD EHOESHCERBALL
FOURHDEDIAA S DR TCEIENRKELRDEDERD K.
AFEL= {Wy, oo, Wy Vi, s VsCLET B fRIZ(1,2,...0} D
BAEESTRETES. BAEL,

BEFHH Yow=C
E@HISOFT

EEOHBF Yicsv;
FRKIZTELOTHS.

RE:EDRPITDONTH, TOEIIICEBAELEDET S,
CEBABDEMIRLTGERFNDIEN BN S THD.

10E1 B MEZTHLRICHEZEH-T-AY, CSTIRESHEHLE
[ERSEN—HEDIFEEEZD. DBMIETEEEFEZ L.

Problem P33: (Knapsack problem)

Given n objects 0;(i=1, ... , n) with their weight w; and value v;, with
weight limit C, choose objects to maximize the sum of values
so that the total weight is at most C.

Letinputbe I = {w,, ..., W;; v}, ..., v;;C}. A solution can be
represented as a subset S of {1,2,...,n}. An optimal solution is a
subset S that satisfies

weight constraint ;g Ww;=C
and maximizes

total sum of values ;= V;

Assumption : Weight of any object does not exceed C. Any such
object is never selected even if there is one.

The same problem was dealt with in the 10th lecture, but consider
a general case in which weight is not integer.
=»Dynamic Programming cannot be used.
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Algorithm P33-A0: (Greedy algorithm)

(1) Sort objects in decreasing order of v; / w;, value per unit weight.
ViIW 2V, Wy =t Z v, W,

(2) Put objects into knapsack in the sorted order. When the weight
constraint is not satisfied, stop after removing the last object.

This algorithm was explained in Lecture 5.

Exercise E14-1:Create an example in which the greedy algorithm
finds only very bad solutions and compare those solutions with an
optimal solution.

In a generalized knapsack problem in which any object can be
divided, the above algorithm finds an optimal solution by dividing
the last object. In practice, the algorithm finds good solutions in
many cases. But there is no guarantee for optimal solution if object
cannot be divided.
Evaluate its performance ratio as an approximation algorithm
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Observation: The approximation ratio of a solution obtained by the
algorithm P33-A0 cannot be bounded by any constant.

Proof:
Consider the following knapsack problem for any constant C=3:
only two objects (w, =1, v, =2, w, =C, v, =C)
weight limit is C
=>sorted order by value per unit weight: 1,2
In the algorithm only object 1 is included in the solution.
Thus, val(S) =v, =2.
On the other hand, if we choose object 2, its value is
val(Opt)=v, =C.
Taking their ratio between them (for maximization problem),
val(Opt) / val(S) = C/2.
Constant C is arbitrary. So, the approximation ratio is arbitrary.
Q.E.D.
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Improving the performance ratio

Greedy algorithm considered only values per unit weight.
Consider not only them but also the object of the largest value.

Algorithm P33-A1: (Improvement of Greey Algorithm)

(1) Sort objects in decreasing order of values per unit weight v; / w;.
Vi/W 2V, Wy = e Z v, W,

(2) Put objects into knapsack in the sorted order.
When exceeding the weight limit, delete the last object.

(3) Let the solution obtained be S, and let v, be the largest value.
if val(S,) < v, then let {k} be the solution else let S,be solution.

We can show that this algorithm is a 2-approximation algorithm:
Let S be the output of the algorithm. Then,
val(S) = max {val(S)), v, }.
If S is the whole set {1,2, ..., n}, it is obviously optimal.
So, assume that at least one object is not in S. Let i be such an object
of the least number 16/34
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Object i: the object of the least number that is not contained in the
solution given by the algorithm.
Since an optimal solution is obtained by Greedy Algorithm if objects
can be partitioned, we have

val(Opt) < v, + v, ++ ==+ v;=val(S))+ v,
Also, by the assumption v; = v,.
Thus, we have

Vity, ety = val(S)) vy = val(S)) vy =2max {val(S,), vi}

= 2val(S).
and hence

val(Opt) < 2val(S),
that is, the performance ratio is 2. Q.E.D

Can we further improve the performance ratio?
(1+¢) -approximation algorithm?
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Algorithm P33-A2: Polynomial-Time Approximation Scheme
¢:arbitrary small constant
let k be a positive integer such that £ Z1/k
Generate all the subsets of size at most k, and extend each such subset T as follows:
= cardinality of T is at most k.
*Neglect the subset T if its total weight exceeds the weight limit.
-If it is within the limit, put the objects not in T into T in the decreasing order of
their values per unit weight.
Output the best solution among those obtained above.

There are O(n*) different subsets of size at most k.
Since k is a constant independent of input size, O(n¥) is a polynomial.
Greedy extension operation for each subset is done in O(n) time.
Thus, the total time is O(n**!): polynomial.

Next, we shall show this is a (1+€)-approximation algorithm.

Opt: optimal solution
|Opt| =k=»it must have been found in the algorithm.
*." Algorithm examines all subsets of size at most k.
So, we assume |Opt[>k in the following. 2034

[Opt] Zk+1ERET S:
Opt={i,, iy, ., i}or = kt1, V(i) = v(iy) =+ = v(i) ERFE
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Assume [Opt| =k+1:
Suppose that Opt = {i; ,i,, ..., 1.}, 1 = kt1, v(i;) = v(i) =+ = v(i,)

Let X be a set of the first k objects, and sort the remaining objects of OPT in the
decreasing order of values per unit weight.

Opt = {i, iy wov s o Bty woe s Bppets Bppovee s 1)
| set X | this part is in the decreasing order of values per unit weight

Then, for each element i; of Opt not in X we have
V(i) =val(Opt)/(k+1), j=k+1, .., 1.

Starting from a set X, we put objects not in X within the weight limit in the
decreasing order of values per unit weight. Let the resulting set be S.
Then, if S=Opt, there is no problem since we have found an optimal solution.
Let i, be an object of the largest value per unit weight in S #Opt=>Opt-S.
That is,

V(i) W(iy) ZV(igyw(iy), g=m+1, ...t (A)

V(in)/W(iy) Zv(i)w(iy), g=m+t1, ...t (A) D I e O L ST IE N
S =iy, ey i gy voe s dppogs Jpoeee 5 Js) | same as Opt thus far | the remaining is the part extended
| SSETOptERIL | HIFERIHRRLIZERS by Greedy Algorithm
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Letting S* be an approximate solution obtained by the algorithm, we have
S*ETITYXLTROONDELRET HL, val(S*) = val(S) = ¥y o V(i) + Ty tmmr V) + i~ V).
val(S*) = val(S) =3, v(i) + Ziert~mt V) + X~ V() where the remaining capacity C' for the part up i, to in Opt and the remaining
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HI-AHHERFELEDAD, k+l~m-1 - capacity C' by the value v(i,,)/w(i,,), we have k+1~m-1 -
val(Opt) = ¥ oy V(i) + Tjogeetma V(i) +C V(i Wiy val(0pt) = Yoy V(i) + Fjopetmmt V() +C V(i) W(iy)-
i [ESICEFENT, REICSICEDHIRBELLENDD, Since i,, is not in S and there is no capacity to be included in S,
C<wi,). C<wiy).
Ffz, O=Y . W(i)+C” 2, Also, since C’=Y ., w(j)+C” we have
val(0pt) < 3oy i V(i) + Tt mmar V) H (i mg WHITW(R)) X V(i) W(iy) val(Opt) < Yoy i Vi) + Tt mma V) H (i g WHITW(i)) X V(i) W(iiy)
= Dtk V) T Yt mma V) T2~ V() V(i) = Dt V) F Yt mma V) T~ V() V(i)
=val(S)+v(i,) = val(S*)+val(Opt)/(k+1). 2354 =val(S)+v(i,) = val(S*)+val(Opt)/(k+1). 24534
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Finally, we have:
val(Opt) =val(S*)+val(Opt)/(k+1).
This leads to
val(Opt)
val(S*)

= 1+1/k =1+e

That is, the approximation ratio of a solution S* obtained by the
algorithm is at most €.

Computation time

Computing time is O(n**"). Since k is the least positive integer satisfying

€ Z1/k, it is exponential in 1/g. Thus,
It is a Polynomial-Time Approximation Scheme(PTAS), but it is
not a Fully Polynomial-Time Approximation Scheme(FPTAS).

Then, is there any fully polynomial-time approximation scheme
for the knapsack problem?
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FPTAS for Knapsack Problem

Goal : polynomial time algorithm both in input size n and 1/e
Idea: To use an algorithm based on dynamic programming that
finds an optimal solution for integer weight case.

Algorithm P33-A3: FPTAS
(1) For a relative error to achieve, let K=¢v . /n.
Here, v,,, is the largest value, v,,, =max{v;, i=1, ..., n}.
(2) Change the value of object i to v’; =[v; /K]. []: floor function.
(3) By dynamic programming, find an optimal solution S for the
modified values and output it as an approximate solution.

Lemma 14-1: The relative error of the solution obtained in
Algorithm P33-A3 is €.

Lemma 14-2: The computation time of Algorithm P33-A3 is
polynomial both in n and 1/e. -

FERE14-1: 7 )LTY X LP33-A3TROONDBD R BE (Le
THb.

FEE: 7 LT YR LTHLNBMRESEL LS.
SITELIL=MEDRERLZDT,
Zi €S ti = Z i €0pt V,x
MRYILD. —F, KilTDOWT, v, =[v, KIEHD,
vi=2 Kv; 2 v,-K
MRYILD. &oT, RXEHD. (K=¢v,,/nlEE)
val(8)=Yics vi = Yies KV = ¥ jcop vi-nK
= val(Opt) - &V, = (1-g)val(Opt).
Lf=H"oT,
[val(Opt) — val(S)] / val(Opt)
= [val(Opt)-(1-g)val(Opt)]/val(Opt)=[1-(1-£)]/1=¢

=155,
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Lemma 14-1: The relative error of the solution obtained in

Algorithm P33-A3 is €.

Proof: Let S be a solution obtained by the algorithm.
Since S is an optimal solution to the approximated problem, we have
YiesViZ Licop Vi
On the other hand, v’; =[v; /K] for each I and we have
vi= Kv’; = v,-K.
Thus, we have (note K= ¢ev,,/n)
val(S)=Yics Vi =i es KV = ¥ jcopvi-nK
= Val(Opt) - &Vypgy = (1-)val(Opt).
Hence, we have,
[val(Opt) — val(S)] / val(Opt)
= [val(Opt)-(1-g)val(Opt)]/val(Opt)=[1-(1-g)]/1=¢

Q.ED.
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Lemma 14-2: The computation time of Algorithm P33-A3 is
polynomial both in n and 1/e.

We shall show an algorithm using dynamic programming to prove the lemma.
Assumption: Each object has positive value and the total sum is V.
Prepare a tablel W[] with n rows and V columns.
W/[i,v] = the weight of S(i,v) where S(i, v) is a subset of {1, ..., i} and the sum
of values of objects in it is exactly v. W[i,v]=c0 if there is no such

subset.
Then,
W[i,0]=0, i=1,...,n
WILvi]=w,,

W[l,v]=0v#v,
The recurrence equation is as follows:
WI[it1,v]=min{ W[i,v], w;,; +W[i, v- v;,, ]} ifvi,, =v
=WI[iv] ifvy, >v
In this way we can find an optimal solution. The computation time is obviously
O(nV). Thus, the algorithm P33-A3 takes time
O(n 3V* )=0(n? V0, )=O(m2[n/e])

which proves the lemma. 3234
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Exercise E14-2: Describe the algorithm using dynamic programming
and write a program based on it.

Exercise E14-3: The problem if finding a least-weight tour (a
shortest path visiting every vertex at least once) in a weighted graph
is NP-complete. Give a 2-approximation algorithm for the problem.

Exercise E14-4: The Euclidean Traveling Salesperson problem of
finding a shortest tour through all the points place in the plane is
also NP-complete. Give a 1.5-approximation algorithm for this
problem.
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