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Computational Complexity

e Goal 2:

— How can you show “Difficulty of Problem”

e There are intractable problems even if they are
computable!
— because they require too Many resources (time/space)!
e Technical terms;
The class NP, P#NP conjecture, NP-hardness, reduction
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5. Computational Complexity

e Observation of the classes

Definition: Class P
Set Lisintheclass P <
There exists a poly-time computable predicate R such that
for each x€3", xELSR(x)

Definition: Class NP
Set Lis in the class NP &
There exists a poly g and a poly-time computable predicate R such that
foreachx€i’, xele Iwe " : |w| =q(|x|)[R(x,w)]

Definition: Class coNP
Set L is in the class coNP <
There exists a poly g and a poly-time computable predicate R such that
foreachx€:", xeleVwe 3" : |w| =q(|x]|)[R(x,w)]
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5. Computational Complexity

5.5. Relations in the Complexity Classes

Theorem
(1)P & NP, P & coNP (.".P & NP n coNP)
(2)NP & EXP, coNP & EXP (.- NP U coNP & EXP)

EXP EXP
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6. Analysis on Polynomial-Time Computability

6.1. Polynomial-time Reducibility

Definition

Let A and B be arbitrary sets.

(1) function h: A—>B: polynomial-time reduction
" (a) his a total function from X* onto **

| (b)xeZ*[xe A<>h(X) e B]

_(c) h is polynomial-time computable.

(2) When there is a poly-time reduction from A to B,
we say A is polynomial-time reducible to B.
Then, we denote by ASrF; B

(...within polynomial time, hardness of A = that of B)
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6. Analysis on Polynomial-Time Computability

6.2. Completeness

Definition For a class C, if a set A satisfies

(a) VLEC[LS, A,

the set A is called C-hard (under SrF;). Moreover, if we have
(b) AEC,

then A is called C-complete.

Theorem A: any C-complete set /" Once you have an
For any set B we have NP-complete
(1) A<" B >Bis C-hard. problem A, it can
(2) A<’ Band BEC > Bis C-complete. be used to

measure to the
other problems
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6. Analysis on Polynomial-Time Computability

6.2. Completeness

There are two ways to prove (NP-)completeness:

1. show ‘for all I according to the definition
. Cook’s Theorem; he simulated Turing machine by SAT in 1971!

: Basically...
Easy to handle since, e.g., 1 F in standard f
3SAT has a uniform structure. ' _Or any p.rogram 'n stahdard torm,
2. simulate it by SAT formulae
T > pretty complicated and tedious

2. use some known complete problem as a seed

. 3SAT§FF[’] DHAM,|3SAT <" VC,...
e  Thousands of NP-complete problems are reduced from 3SAT!

. E.g., from “DHAM is NP-complete for general graphs”, we have

— DHAM is NP-complete even for planar graphs max
DHAM is NP-complete even for graphs with max degree=3 4 degree=5

— DHAM is NP-complete even for bipartite graphs...
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6. Analysis on Polynomial-Time Computability

6.2. Completeness

Theorem VCis NP-complete
[Proof] Since VC € NP, we show 3SAT <" VC.

For given formula F(x,,x,,...,x,), we construct a pair <G, k>
of a graph and an integer in polynomial time such that:

There is an assignment that makes F()=1
<G has a vertex cover of size k

Construction of G (F has n variables and m clauses):

1. add vertices x;*,x; and the edge (x*,x;) for each variable x; in F

2. Foreach clause C=(/;; VI,V 3) in F, add vertices I}, I, I;; and three
edges (lip, 1), Ui lis), (li3,1)

3. addthe edge (/,,,x;) if the literal [, is x, or add (/.;,x;) if it is —x;for
each clause C

4. letk=n+2m
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Theorem VC is NP-complete

There is an assignment that makes F()=1
<G has a vertex cover of size k

Construction of G (F has n variables and m clauses):

1. add vertices x;*,x” and the edge (x;*,x;) for each variable x; in F

2. Foreach clause C=(/; VI,V 3) in F, add vertices I, I,,, I; and
three edges (/.,,1,), (1,.13), (15,1,1)

3. addthe edge (/,,x*) if the literal /., is x, or add (/.,,x;) if it is —x;for
each clause C,

4. letk=n+2m

Ex:  F(x,x%3,%,) = (X, VX V) A (T Vs V) AV =3 V x,)

k=442 X 3=10
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Theorem VC is NP-complete

It is easy to see that the construction of G from F can be done in polynomial
time of the size of F. Hence, we show that...

There is an assignment that makes F()=1
<G has a vertex cover of size k

From the construction of G, { at least one of x* or x;

any vertex cover S should contain o
at least 2 of 3 vertices in C;

Hence we have |S| 2 n+2m = k.
We have no extra vertex!!

Ex:  F(x,x%3,%,) = (X, VX V) A (T Vs V) AV =3 V x,)

k=442 X 3=10
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Theorem VC is NP-complete

There is an assignment that makes F()=1
=G has a vertex cover of size k

1. Put | % =1 into S for each x..
x; if x=0

2. Since each clause C=(/;,,1;,,1;3) is satisfied, at least one literal,

say /., the edge (/.,x,;) is covered by the variable x;,. Therefore,
put the remaining literals (/,,/;) into S.

= From the _ S is a vertex cover of size k.

Ex:  F(x,x%3,%,) = (X, VX V) A (T Vs V) AV =3 V x,)

k=442 X 3=10
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Theorem VC is NP-complete

If G has a vertex cover of size k, there is an assignment that makes F()=1

1. From _ a cover S contains 2m vertices

from the clauses, and n vertices from the variables.

2. Thus the cover S contains exactly one of x;* and x; and
exactly two literals of a clause C,.
3. Hence each clause C; contains exactly one literal /; which is not in S,

and hence incident edge should be covered by a variable vertex.
x=1lifx*in$S J

= The following assignment satisfies F: |
€ Toliowing assignment satisties X,-=O ifx,.'inS

Ex:  F(x,x%3,%,) = (X, VX V) A (T Vs V) AV =3 V x,)

k=442 X 3=10

Q.E.D.
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Theorem VC is NP-complete... Addition

What happen if the formula is not satisfiable?

F(x3,%5,%3) = (X VX VXA (T V60V —00) A (G Vs Vixa) A (T, Vi, V —xg)

G

8\

&)

If Fis unsatisfiable, it contains at least one clause s. t. each literal
is not covered by a vertex. So, Vertex Cover should contain three
literals in the clause. Hence any vertex cover has size at least k+1.
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6. Analysis on Polynomial-Time Computability

6.2. Completeness

Theorem

degree: the number of
edges incident to a vertex

N\

DHAM is NP-complete even if maximum degree=5.

[Proof]

Since DHAM & NP, DHAM <5 ENP
We show DHAM <. +DHAM ..

Replace the set of “arcs to v”
and the set of “arcs from v”
by a right ‘gadget’.

A Hamiltonian cycle through v
on the original graph
corresponds to the
Hamiltonian cycle through v
on the resultant graph.




6.ZIEA IFfEIETHE AT RETE

O FEHT

6.2. e
= IE

[RIEBA]
DHAM € NP730)’C DHAM <. ENP.
&> TDHAM <, DHAM . &R Y )

[VICABDIXRIvi b 538 1%
LMBAREHC Y TEZ]RZ D

TTNT ST TvEES
INSILAUBRRRIE,
B2 - 57TCvx
EAHNIILE BRI
XtaDlTohnb.

\ \ N\
DHAM (3T 57D wmRREHAS5TH NPESE

RE:TARIZDEMNDS
D AREL




6.2. Completeness

Theorem DHAM is NP-complete even if max. degree=5.

Points:

e Up to down via cycle |

e Each vertex has deg=5 Hd_ﬂ | height: O(log d))
4 212 number: O(d))

[Proof (sketch)] i

For each vertex v of degree=6, replace the edges around v by
the gadget.

1. If the original graph G has n vertices with m edges, the resultant graph
G’ contains O(n+m) vertices with O(m) edges. Hence the reduction can
be done in polynomial time of n & m.

2. Each vertex in G” has degree at most 5.

3. G has a Hamiltonian cycle < G’ has a Hamiltonian cycle. QED
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Addition (BFI17) Many natural hard problems are either

 Poly-time solvable, or
®* R. Uehara, S. Iwata: e NP-hard

Generalized Hi-Q is NP-comple
The Transactions of the IEICE, E73, p.270-273,1990.
e P. Zhang, H. Sheng, R. Uehara:
A Double Classification Tree Search Algorithm for
Index SNP Selection, BMC Bioinformatics, 5:89, 2004.
e R. Uehara, S. Teramoto:
Computational Complexity of a|Pop-up Book
4t International Conference on Origami in Science, Mathematics, and
Education, 2006.
*E. Demaine, M. Demaine, R. Uehara, T. |UNO| Y.[UNQ:
UNQJis hard, even for a single player,
Theoretical Computer Science, Vol. 521, pp.51-61, 2014.

*E. D. Demaine, Y. Okamoto, R. Uehara, and Y. Uno:
Computational complexity and an integer programming model of Shakashaka,
IEICE Trans. Vol. E97-A, No. 6, pp. 1213-1219, 2014.




7. Recent Topics of Computational Complexity

* Hierarchy of the classes

— P£NP conjecture is still main topic
* One of the seven millennium prize problems!
e See one big project called ELC in JAPAN
(http://www.al.ics.saitama-u.ac.jp/elc/)

 Tons of NP-complete problems

— “The problem XX is NP-complete” is not enough as
a journal paper now!

e E.g., Information Processing Letters has a rule...



7. Recent Topics of Computational Complexity

 Tons of NP-complete problems

— “The problem XX is NP-complete” is not enough!
Restricted problems solvable in poly-time
Approximation algorithm (or its hardness)
(Nontrivial) exponential algorithm

> w N e

Fixed parameter tractable algorithm (or its
hardness)

5. Randomization
... some of them are given in the class of Algorithm!



Schedule(3%Y) M F 5E)

10/30(Thu): Last class (Bl F & E N FEE)
— Submission of the report (2) (L7h—k(2)igH)
— Course Evaluation Questionnaire (27 >45—FF)

— Office Hour: Comments/Answers on report (2)
11/ 6(Thu): mid-term exam (H fE]E4 ER)

— 40 points xNotes, Textbook, Copy, Printout,...
— Only pens and pencils (FF5 1A A A A])

— Office Hour: Next lesson by Prof. Miyaji



