1216 Computational Complexity
and
Discrete Mathematics

=A\

Tty 682

3. Machine model & computability

3. Studies on what is a computation.

Turing machine model consists of

* finite control

Finite
conoral

 infinitely long tape

with read/write head | \ cear
read/write "y

head

In|t|a” » : infinite tape
Y T T

[[|
1. tape consists of “letters”

2. the head is located at the leftmost position

3. YVUETILEFERREE

3. T5t&E1&(F ol 2
Fa—) 0T RTILOERESR
o HFR&HIHER

Finite

. '*.:\ KE:§0)7___7o contrel
Eﬁﬂ%%/\‘y I: read/write e
a4
E V- 'ﬁ% . et » : infinite tape
*)J’H'Ik'“" IIIIHIIﬁIIIIIII

1. T—JIZIXI3X=F 51
2. ~NYKIE—FBEIZHS

3. Machine model & computability

3. Studies on what is a computation.

Turing machine model consists of
e finite control
 infinitely long tape

Finite

with read/write head control
It moves as follows;
1. r/w head reads the letter Leak e .Ei”
1 L ™ infinite tape
2. according to the letter, T H| Taat

1. rewrite the letter
2. move the head to the left or right neighbor

3. change the state of control and go to step 1 until it comes
to “accept” state or “reject” state.

3. UETILEETE AT REN
3. T5t&E 1&(Tfarm

Fa—U 0T BTILDOERES
. HIRFIEIER

- EEREDT—T —
Eﬁﬁ%%’\‘y I: control
EFEFIEIXLLT DAY :
1 B/EANYRAIXFHRT o]l Neoo
2. XFORARAITIELT infinie tepe
. Xx=%r=Ex ||||"r'||ﬁ|||||||

2. ANYREEAEMNEIZ—DT 5T

3. ’ﬁBE%'HﬁI]ﬁBONk e L Z25. | 2 PREMNIESE [IREE
(275> TLVE 75\07”!9;(7'/71l R5.

3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal
e it can simulate any computation

* it has the same computation power as recent
supercomputers! (if you do not mind the speed)

Finite
control

readfwrite - .gaar
head

a
L infinite tape
Ll | | [T I T T T T 111

3RV VETIVERTEATREE

3. IEt&E J&IE M

Fa—)T Fa—)07 oD R ZERERA

EALEETH-IBTES

S EAEA LS D R—/ S—a E 1 —RELAEY

ICRICT®HA! GIEFEEERIT N

Finite
control

readfwrite

gear
o gy

head
NN | |

‘ﬁ: infinite tape
HEEEEE

3. Machine model & computability

3. Studies on what is a computation.
Turing showed that Turing machine is universal
E.g. 1.
k letters tape = binary tape;
each letter can be encoded by a binary string.

Finite
control

readfwrite gear
head
L]]

a4

a
L infinite tape
| | HEEEER

3RV VETIVERTEATREE

3. T5T& &I/
Fa—)TEFa—1) 002 D AREEEEERA
{51|1.
T—7 LDXFDIEFEHI K = XF (L 24;
FNEFNDXFEE2EXFITHSL.

control

gear

readfwrite "y

head a
L infinite tape
L[| [T TTTTT1]

3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal

E.g. 2.

infinite both sides = infinite just right side;
1. “fold” the tape at the center
2. for the four letters, apply E.g. 1.

Finite
control

3. finite control has a state for

“which tape?” | \gw
v || NS

||||H||‘ﬁ'||||

infinite tape

3RV VETIVERTEATREE

3. IEt&E J&IE M

Fa—)T Fa—)07 oD R ZERERA

1512,

T—JIXmAIERE = T—7 X6 QI ITER E,;
1. T—J7%dhRTIHFYRILTERS

2. 4BYDXFITH1%E A

Finite

3. ARREETIESLD o

T EEE

readfwrite

gear
a4

head
NN | |

‘ﬁ: infinite tape
HEEEEE

3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal

E.g. 3.

k (binary) tapes = 1 binary tape;

1. “stack” the k tapes onto a tape

2. for the 2k letters, apply E.g. 1.

(each head position is stored at
left end)

Finite
control

readfwrite gear
head
L]]

"

i
L infinite tape
H||ﬁ|||||||

3RV VETIVERTEATREE

3. 51 & 1&E /I
Fa—Y T FFa—1)0T7 0 DAEEEREERR
513.
kARD2:E)T—T = 1KD2ET—T;
1. kRDT—TE1IRKDT—TIZFEHERIS
2. 2kFEFEDXFIH1%ZE A

Finite
control

BET—T NI DLLE FH& s -

aaaaa ,-.

T _700) ZE ﬁm ':EE i R L2 : infinite tape
7 " % IIIIHIIﬁIIIIIII

3. Machine model & computability

3. Studies on what is a computation.
Turing showed that Turing machine is universal
E.g. 3.
k tapes = so-called “von Neumann computer”
= k bit computer on your desktop

Address Data

0000 DOoo
0000 0001
0000 0010
0000 0011
00000100

11111110
11111111

0101 0101

0000 0000

11111111

11001100

—

11000011

Finite control

Program counter: PC

00001111

1111 0000

3RV VETIVERTEATREE

3. NEt&E 1&IFfaIm ?
o135

Fa)02 M AREEZEEA
{51]3".
kT—7 =W\ BI D+ /A< IEHERE
=EBD KEYrDOVE1—4

Address Data

00000000 0101 0101
00000001 D000 0000

Finite control

00000010 11111111
00000011 1100 llﬂﬂf
00000100 (11000011

11111110
11111111

Program counter: PC

00001111

1111 0000

3. Machine model & computability

3. Studies on what is a computation.
Turing showed that Turing machine is universal
Two crucial ideas;

1. A Turing machine T can be encoded as a (loooong)
binary string that consists of
1. string that represents the finite control

2. string that represents the contents on the tape

2. A universal Turing machine U simulates any Turing
machine T represented in the binary string.

(The machine U is a kind of “simulator”)

3RV VETIVERTEATREE

3. [Et&E 1&(Ffarhr 2

Fa— o FF1—)0T T DRI

“ODNEERTATT;

1. Fa—YU I 0 TIEUTOZDORBEDH
W (R—UV)2EXFHITRINGT BHIEMTES.
1. AMRHIEHESZEEETTLI=XFS
2. F—TDHNBEEETLI-XFS

2. PAEEFa1—N)FTo0 UIREXFEITRIFSN
FEEDF1—)TI0 TOEEZIEITES
(RO UIE—FEDILzaL—4))

3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal

In the term of “function” Fu:

input <T x> —

Function Fu

> output y=T(x)

input <T x>: that represents “the code of T’ and “the code x of the input to T’
output T(x): the output of T with its input x

[Theorem] (Turing 1936)
There is a (universal) Turing machine U such that it computes T(x)
for any given Turing machine T and its input x.

3RV VETIVERTEATREE

3. IEt&E J &1L M

Fa1—1)

DONETFa—1) 0T <D FHEeEE SRR

BA% Fu ZE->TRE(E:

AN <Tx> —| BE#Fu - H T y=T(x)

ABR<Tx>: [TEFEAELEED IETTAD A AXIZFEILLI-2 DD ER

3 T(x)

XUV TIZAN xEEZ-EEDH A

] (Fa—")>%71936)
EZONT-EEDF1—ITII0TEFNAD AT xITHL,

Tix) Z5tE(

)T D(AEE)Fa1—IV TR UNTFET B.

3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal
In the term of “Turing machine”:

Fim'tel ﬁ/ Description of U
Congro
1. <Tx>is encoded and written on the tape at first
| cear 2. T(x) will be written on the tape by U in finite time
read/vwrite "y) .
head (if T(x) does not halt, so is U.)

L
L I infinite tape
[(TITITIT T T T TTITIT]

input <Tx>: that represents “the code of T’ and “the code x of the input to T’
output T(x): the output of T with its input x

3RV VETIVERTEATREE

3. T5t&E1&(F ol 2
Fa—Y G EFa—1) 070D AEEEAELRR
Fa1—) IV I ETILCRIET B¢

:j:r]:llt?ul ‘ UO)%EEE
FEEESNTRAIT—TIZEMNTLNS

1. <Tx> EF=

rsadbisibe \\gear 2. T(x)IZUIZE->THERBRIANIZT—TIZENMMD
e T BEIELBLMES, UL R,
L[] ’_’J| |T_-| il il

AR <> [TEFHIELELD IE TAD AN 1ZFHIELIZL D DESR
BATX): IV TICAN xE5EZESDH T

Computational Complexity

e Goal 1:

— “Computable Function/Problem/Language/Set”

 We have two functions;
1. Functions that are not computable!
2. Functions that are computable.

e Technical terms;
computability, diagonalization

e J—)L1:

ST EEDER

— ST E IR B2 RTeE S5/ 5
« BAEICIX2TEEEFET B;
1. FEAEE(?)GEH
2. ErEIEE/ZRE#K
- BET HEPIAEE;
ETEAIEETE. X ARmE

e O—)L2:

A

— [RARED

HSIZTI HEEES

4. Undecidability and Diagonalization

4. Undecidable problem

The following problem cannot be solved by any Turing
machine:

The problem HALT (Problem of deciding halting)
input:a code <T x> of Turing machine T and an input x
output: T will terminates for the input x?
Yes: if T(x) terminates
No: otherwise.

Precisely, we can show that there is no Turing machine U’ that
computes the halting problem

...Proof is done by “diagonalization” essentially...

4. ST EABETE X A RS

ST E A BET R R
LTORIEZEESF 1) T I FRELLELY:

=
B

EIEEFIE R REHALT ((FLET HAMEINTRET HElRE)
AR Fa—)oo<vooTE
TNANDANXxTE=FEZIELE=XFI<Tx>
HO:TICADxZE5Z5E, FIETEHEMN?
Yes: T(x) IX(BRFHEARIZ)EIET S
No: {Z1E LAV EER JL—T)

EREICEZIL, FLEMHEMBERF1—)2I I U IEFFEELAEL.
-REBR T S RERIE1Z AL TITS

4. Undecidability and Diagonalization

4. 1. A simple proof of undecidability

[A simple(?) proof]
By contradiction: Suppose that there is a Turing machine U that solves HALT.
— U can be simulated by the other Turing machines.

— We can design/construct the following Turing machine X:

orog X(input w: £*): I*: What happens on
label LOOP; X(x)??
begin
if U/ (w, w) then LOOP: goto LOOP Program X can be
else halt(0) end-if encoded by a string x
end.
- N * The first wis the code of a
Program X(w) Turing machine W

* The second w is an input
string to the machine.

* terminates if W(w) does not terminate
e never stop if W(w) terminates

- J

4 FTHEARETE EXT B RERIE

=] /= Y Vi = ~=
4. 1. 5TEAGeE D H AL 175 ER
[Bl (?) 7R REBA]
BIEEIZES: FIEHHERRBHATZ S F 1 —) I I D UNFEELI=ERE
SUIRMBOF1—)2F <L TEMRRTRE
SHDFA—IITIOXERERTHRIENTES

prog X(input w: £*): T*; [X(X) ’é%ﬁ?’ék}
label LOOP; A A FEZ B H??
begin
if / (w, w) then LOOP: goto LOOP [JngsLxBEYE]
else halt(0) end-if XFH| x TRETES
end.
c—DHD wWIFFa1—-)I~
70455 L X(w) 1£... IoWERIRT HXFS
. Ww) BEIELENESZIET S c —DHDOwWRETDIYIUA

o W(w) DNEILT BLELER)L—F D AAXF3

4. Undecidability and Diagonalization

4. 1. A simple proof of undecidability

[A simple proof]
By contradiction: Suppose that there is a Turing machine U that solves HALT.
— U can be simulated by the other Turing machines.
— We can design/construct the following Turing machine X:

Program X(w) What happens on X(x)??
* terminates if W(w) does not terminate * Two choices; terminate/loop

e never stop if W(w) terminates

Case 1: Assume X(x) terminates.
By the design of the program, X(x) does not terminate.
- It contradicts the assumption!

Logically, it may be
true, but...??

Case 2: Assume X(x) does not terminate. . e
Diagonalization is

By the design of the program, X(x) does terminate.
- It contradicts the assumption!

hidden here.

45T EAREEEX ARHEA
4. 1.5TEAEEMED E AL 755EH

[B8 fi 75 S B
BIREICED: FLEHHIEBBEHATZ B F1—) oI I o UNTFEEL-ERE
SUIRMMDFa—)2F < TREINRIE
SRDFa1—)oTIUXEERTBHIENTES

FO55 L X(w) .. [X(x) %5@???‘6&@75“@:6/3\??]

 W(w) hq{%ib@(ﬂ@%fgij—é . {f}ﬁ%(izﬁbj; 1%&/%5&)[/—70
« W(w) BNMEIET HELEREIL—T

r—2X1: X(x) BMEIET B ERE
OS5 LDOERE. X(x) BMBEIELEZLNEEIZEST

> REIZFE! .
RIBRYICIZIELZESTM..2?
r—2R2: X(x) BMELIELIEWERE BRICH AR ZEZNRENTIND.
TOUSLDERLE. X(x) BMELELEGEWNEES
> REIZFIE!

4. Undecidability and Diagonalization

4. 2. Diagonalization

“Diagonalization” was introduced by Georg Cantor in 1873.
He concerned with the problem of measuring the size of infinite sets.

Definition:
The “size” of an infinite set is called “cardinality” of the set.

Natural(?) question:
Any pair of infinite sets have the same “cardinality”?
How can we compare them?
... design a one-to-one mapping!

Ex. 1. The following sets have the same cardinality:
Natural numbers (0,1,2,...), integers (..., -2,-1,0,1,2,...),
even numbers (0,2,4,...), primes (2,3,5,7,11,13,...),
rational numbers, Turing machines (= computable functions), ...

45T EARREME LT AR
4. 2. X ARIRE

[t AfERE IS A IV D b—IL AV 1873FIZE E.
EEBEESDORETIEALEVSHBRBICRYBAD-6HDED

TE &
EBEESDIKESIDZEAXTEE (cardinality) | EFE AR,

Z<BRQ?)EEER:
EALGERESELRILIEEI1ZEO>OMN?
EIP>TRESIZLELI=OELDM?

ISR DO o= EZNGIERICEE LT B!

Bl UTOES-BIIENLIRECEE I THS:
BR%(0,1,2,..), B%h (..,-2,-1,0,1,2,..),
{R%8(0,2,4,...), =% (2,3,5,7,11,13,...),

HEH, Fa—)o0 <l (= SHERTEELES), ...

4. Undecidability and Diagonalization

4. 2. Diagonalization

Definition:
A set is countable if it is finite or it has the same cardinality of natural numbers.
(In other words, countable set can be enumerated as “1st” “2nd” .

Ex. 1.1.) e The ith even number is 2i
Even numbers are countable by
the one-to-one mapping 0 |1]2 |3 |4
0 2 4 6 8
Ex. 1.2. The ith prime

Observation:
Any subset of a

the one-to-one mapping:

Primes are countable by munn
2 3 5 7 11

countable set is also
countable

45T EAREEEX ARHEA
4. 2.3 AR IE

EZE:
SELNERTHLIN. BABERLCEEZFE DEE, INEMAIEIEGELD.
(RIDEVWAZINIE. T—OBITZ DB IEHMA L ITFONRESHTEESR)

f5il1.1. iBEDEH#E2ETD
BEIIEDOHAGTITHHLDT
TEES 0 |1 |2 [3 |4
0 2 4 6 8
f51.2.
2HIEORICHITHHLIDT HEHDOERH

AIREES: 58
e

[TAIREE

4. Undecidability and Diagonalization

Exercise 2: Why we do not
use the ordinary
lexicographical ordering?

4. 2. Diagonalization

Definition:
A set is countable if it is finite or it has the same cardinality of natural numbers.

Ex. 1.3 Observation:
The set of 0/1 strings is countable by the lex. ordering: Any subset of a

g, 0,1, 00,01, 10, 11, 000, 001, 010, 011, 100, ... countable set is also
countable

Ex. 1.3.
Turing machines (and corresponding functions) are countable
because each machine can be represented by a binary string.
(In other words, they can be enumerated as 7, T, T,,...)

Natural question: Is there any uncountable set??

4 5T BRI L ARRmIE

EEMEE2: CCTREOHEHER

4. 2.0 FHERERIE IBREZEEHELNDIE, HEMN?
T
SENERTHSAN., BRBMERMUEEZTFDEE. INFIAIEIEE LS.
5] 1.3".
0/1IXFIDEREFREBEEFHEXIRFICKYAIEES: 038
g, 0,1, 00,01, 10, 11, 000, 001, 010, 011, 100, ... AIEEEDHHLES
5l 13 IRIEEE

Fa—)oU I U (THETELAH L.
BEIVUN2BEXFI THESILETESEHIENLARES
(RDEVWAZINIET, T, T,,.. LFIETED)

BAGEME: IR TEVWRBGATHEET 2DEH50 7

4. Undecidability and Diagonalization

4. 2. Diagonalization

Theorem:
The set R of real numbers is not countable.

[Proof by diagonalization]
Assume that P is countable; i.e., they are enumerated as R={ R, R, R,, Rs, ... }

Each R;isinthe formof R;=...r,) ri3s r)' riy' rio.ri1 i, rals- indecimal,
We define a number X = 0. x; x, X5 ... by Ex
x;=3if r,;=1,2,4,5,6,7,8,9,or 0 R, = 123.456...
x;=1if r;;=3 R,= 0.131313..
R, = 555.5555555...
Then Xis a real number, so it will appear as X=R;for somei. R,= 3.141592...

But x;is... 3? or 1?... we cannot decide it,
which is a contradiction! X=0.3133._

Therefore P is not countable!!

A4 GTEABETEEXT AR
4, 2. % AR E

EIH:
EMNDESRITIENMEES.
[%t B EREmEIZ K SHEEHA]

H

SANL

14

EEPMHAIEESIERET S, LTDLOIZHIZETEE R={R,y, Ry, Ry, Ry, . }

&R IFTHERRETR=.r;,,/rsr, 2’ Fid Fio-fiafialislia -
BX=0.%x,%X; ... DEHTIZERTE
x;=3if r,;=1,2,4,5,6,7,8,9,or 0
{x,: lifr;=3

FTHEXITEHRLGDT. HD i ITHLTX=R, EEIFTBHILT.

ECAMIDEE X DIEIL... 3? HAWNK 12, RETELLY,

—NITFF!
L7=hAS>T P IXRIE TIXAL

EEITS.

1.

123.456...
0.131313...

555.5555555...
3.141592...

JDJDJDJD
NP

w

X=0.3133...

4. Undecidability and Diagonalization

4. 3. Proof of undecidability via Diagonalization
[Theorem] The problem HALT is undecidable.

[Proof by diagonalization]
Let @ be a set of all computable functions (with one argument) .
Each element in @ corresponds to a Turing machine, that can be represented
in a binary string in X*.
Thus we can enumerate all corresponding binary strings as
by, b,, ..., b, ..
in the lexicographical order.
Thus, we can also enumerate all the functions in ®:

fufor s fio o

In other words, the set ®@ is countable!

4.5t E A RETE &t AR ERIE
4. 35FBIRIMEKIZSEBEERREN O I

[EHE] 1 EREHATIXREFEBETH A.

%t AR EREIC K HEERA]
STEAREL (IAN)EMI R THLLELIEEET O T 5.
EEO0ODREXRIF—ODFa1—)TTUITHIGL.
ZTNIEZ D2HEXFITRIZEINS.
NHD2EXFHFFEKIEF T

b, by, ..., by ...

LIFETES.
LI=D>TODNIT RTHOERMIIRDLOIZFNETES:

fuforeos fio o
BHEIZWOWZIX O FRTE!

4. Undecidability and Diagonalization

4. 3. Proof of undecidability via Diagonalization
[Theorem] The problem HALT is undecidable.

[Proof by diagonalization]
Let @ be a set of all computable functions (with one argument) .
All the functions in @ is enumerable as f,, f,, ..., fi, ---
with corresponding strings by, b,, ..., b, ...
For the strings and functions, we consider the table of f(b;) as follows;

b, b, by ... b, b, b, by .. b,
fil1 €00 o0 fill 600 O
0 L1 € /0 0 1 €
f3 0 11 0 11 From the table, f3 0 11 L 11

we design a new function

frle € 1 0 The value of f{(b))
1 means “loop”

4. 5T EARETEEXT

R

G 125

4. 3. ARMRIEICKDETE AT BEE D EEER

[EHE] 1 EREHATIXREFEBETH A.

[t AR ERIE(IC K HEEHA]

STEAIET QAN BRI A THLEEIREZ O LT 5.

ODTRTOEMIETRDESIZFIETES: £, f, .
(X5 b, b,, .., by, ... ISR EEAHFEATIND)

CNBDXFHLEBMISRHLTRDE f(b) £EZD;

b, b, by ... b,
fl1 €00 0O

L10 L1 €

£:10 110 11 | REFALTHLLEHZ
: EEI D

FERIIf(b)DIE

1 lirﬂlﬁ)lx—jj

, fir oo

b, b, by ... b,
fll €00 0O
f,l0 0 1 g
filo0 11 L 11
fele € 1 L

4. Undecidability and Diagonalization

4. 3. Proof of undecidability via Diagonalization

[Theorem] The problem HALT is undecid” Then, g is a function.

If g is in @, it will appears as f, for some i.

[Proof by diagonalization] But f,(b,) is not defined properly.
Let @ be a set of all computable functi{ Thys gis not in @.

All the functions in @ is enumerable as That is, g is not computable!!

with corresponding strings by, b,, ..., | This function g is exactly the same as the
For the strings and functions, we consic. function computed by the program X!!

b, b, by ... b, b, b, by ... b,
f1 1 ¢ 00 0 From the table, fl 1 € 00 0
£l0 L1 g we design a new function g 10 0 1 c
0 110 11 f3/ 0 11 L 11
Js 0if f(b)=L ’
1 b)= | H e
......................... O Litsme L |
fele € 1 0 fele € 1 L

STEAIEEZ (1A A

4T EAR RS ARRIE
4. 3. ARRMEICE DT ETREME DL

(B ELEHER 5L g [FBBTHD. *
[ﬂﬁ%}iéﬁiﬁ(:;égﬂ :E)L/ g 75\ () O)giﬁb, %%) / '»ﬂb—tﬁt&é[i?f%é

LWLIDEE f(b) DIEILTEZ TERL.
£oTgld ® DEXRTIEAL.

PDTATOERI 5Fy g FtETRETIZALM

(X3 b,, b, ...,

NHEDXFEIER DEDTHB!!

| COBMglEEKITEZR-TOTSLXTHESNSEHT

b, b, by ... b, b, b, by ... b,
1 600 O = %FIALT fill € 00 0
0 L1 & | #HLLEHgEEETS L0 01 e
0110 11 il011 1L 11
0if f(b)=_L .
......................... b= 4 I
......................... by {Llff,-(b,-)u A
e ¢ 1 0 fele € 1 L

[Proof by diagonalization (continued)]

If HALT is computable, we can compute the function g(x), as in
the same manner of the program X. However, g(x) is not computable.
Therefore, HALT is not computable. Q.E.D.

[Our conclusion: The problem HALT is not computable.]

o
@)

—

The number of functions is “greater” than

the number of computable functions.
)\ ‘/L

Diagonalization
Given a set G of functions, construct a function g
which does not belong to G.

[t A HRERE I L AEEAR (#5)]

£ L HALT DNEHERIEER S, O S LXERIBRDIERRIZKY, BEHg(x) £
HEAEETHD. LA g(x) (XETERBETITALY.
L= > T HALT [XEHERTEETIE AL, LR DY

[.‘%Eﬁ: =1k #ERRE HALT (XY Ea—2TIXERFARLN.]
o)

(ES% D E IL[E B TE 20
(EE RN AR
>\ /

*t F 4R L :
HLIEZRNEBRESICERILWNEEZRT-ODME,
HEIEBMDES GHNEZONT=EE, ZOESIZEILL
B g ZHERI 5 AEEZH5Z TS,

COLTHERLE-g (X, AR N DORIZELST-6.,
BEHMES G IZIXESELY,

