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3. Machine model & computability

3. Studies on what is a computation.

Turing machine model consists of

* finite control

Finite
conoral

 infinitely long tape

with read/write head | \ cear
read/write "y

head

In|t|a” » : infinite tape
Y T T

[ [ |
1. tape consists of “letters”

2. the head is located at the leftmost position
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3. Machine model & computability

3. Studies on what is a computation.

Turing machine model consists of
e finite control
 infinitely long tape

Finite

with read/write head control
It moves as follows;
1. r/w head reads the letter Leak e .Ei”
1 L ™ infinite tape
2. according to the letter, T H| Taat

1. rewrite the letter
2. move the head to the left or right neighbor

3. change the state of control and go to step 1 until it comes
to “accept” state or “reject” state.
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3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal
e it can simulate any computation

* it has the same computation power as recent
supercomputers! (if you do not mind the speed)

Finite
control

readfwrite - .gaar
head

a
L infinite tape
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3. Machine model & computability

3. Studies on what is a computation.
Turing showed that Turing machine is universal
E.g. 1.
k letters tape = binary tape;
each letter can be encoded by a binary string.

Finite
control

readfwrite gear
head
L] ]

a4

a
L infinite tape
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3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal

E.g. 2.

infinite both sides = infinite just right side;
1. “fold” the tape at the center
2. for the four letters, apply E.g. 1.

Finite
control

3. finite control has a state for

“which tape?” | \gw
v || NS

||||H||‘ﬁ'||||

infinite tape
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3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal

E.g. 3.

k (binary) tapes = 1 binary tape;

1. “stack” the k tapes onto a tape

2. for the 2k letters, apply E.g. 1.

(each head position is stored at
left end)

Finite
control

readfwrite gear
head
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3. Machine model & computability

3. Studies on what is a computation.
Turing showed that Turing machine is universal
E.g. 3.
k tapes = so-called “von Neumann computer”
= k bit computer on your desktop

Address Data

0000 DOoo
0000 0001
0000 0010
0000 0011
00000100

11111110
11111111

0101 0101

0000 0000

11111111

11001100

—

11000011

Finite control

Program counter: PC

00001111

1111 0000
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Address Data

00000000 0101 0101
00000001 D000 0000

Finite control

00000010 11111111
00000011 1100 llﬂﬂf
00000100 (11000011

11111110
11111111

Program counter: PC

00001111

1111 0000




3. Machine model & computability

3. Studies on what is a computation.
Turing showed that Turing machine is universal
Two crucial ideas;

1. A Turing machine T can be encoded as a (loooong)
binary string that consists of
1. string that represents the finite control

2. string that represents the contents on the tape

2. A universal Turing machine U simulates any Turing
machine T represented in the binary string.

(The machine U is a kind of “simulator”)
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3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal

In the term of “function” Fu:

input <T x> —

Function Fu

> output y=T(x)

input <T x>: that represents “the code of T’ and “the code x of the input to T’
output T(x): the output of T with its input x

[Theorem] (Turing 1936)
There is a (universal) Turing machine U such that it computes T(x)
for any given Turing machine T and its input x.
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3. Machine model & computability

3. Studies on what is a computation.

Turing showed that Turing machine is universal
In the term of “Turing machine”:

Fim'tel ﬁ/ Description of U
Congro
1. <Tx>is encoded and written on the tape at first
| cear 2. T(x) will be written on the tape by U in finite time
read/vwrite "y ) .
head (if T(x) does not halt, so is U.)

L
L I infinite tape
[(TITITIT T T T TTITIT]

input <Tx>: that represents “the code of T’ and “the code x of the input to T’
output T(x): the output of T with its input x
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Computational Complexity

e Goal 1:

— “Computable Function/Problem/Language/Set”

 We have two functions;
1. Functions that are not computable!
2. Functions that are computable.

e Technical terms;
computability, diagonalization
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4. Undecidability and Diagonalization

4. Undecidable problem

The following problem cannot be solved by any Turing
machine:

The problem HALT (Problem of deciding halting)
input:a code <T x> of Turing machine T and an input x
output: T will terminates for the input x?
Yes: if T(x) terminates
No: otherwise.

Precisely, we can show that there is no Turing machine U’ that
computes the halting problem

...Proof is done by “diagonalization” essentially...
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4. Undecidability and Diagonalization

4. 1. A simple proof of undecidability

[A simple(?) proof]
By contradiction: Suppose that there is a Turing machine U that solves HALT.
— U can be simulated by the other Turing machines.

— We can design/construct the following Turing machine X:

orog X(input w: £*): I*: What happens on
label LOOP; X(x)??
begin
if U/ (w, w) then LOOP: goto LOOP Program X can be
else halt(0) end-if encoded by a string x
end.
- N * The first wis the code of a
Program X(w) Turing machine W

* The second w is an input
string to the machine.

* terminates if W(w) does not terminate
e never stop if W(w) terminates

- J
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4. Undecidability and Diagonalization

4. 1. A simple proof of undecidability

[A simple proof]
By contradiction: Suppose that there is a Turing machine U that solves HALT.
— U can be simulated by the other Turing machines.
— We can design/construct the following Turing machine X:

Program X(w) What happens on X(x)??
* terminates if W(w) does not terminate * Two choices; terminate/loop

e never stop if W(w) terminates

Case 1: Assume X(x) terminates.
By the design of the program, X(x) does not terminate.
- It contradicts the assumption!

Logically, it may be
true, but...??

Case 2: Assume X(x) does not terminate. . e
Diagonalization is

By the design of the program, X(x) does terminate.
- It contradicts the assumption!

hidden here.
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4. Undecidability and Diagonalization

4. 2. Diagonalization

“Diagonalization” was introduced by Georg Cantor in 1873.
He concerned with the problem of measuring the size of infinite sets.

Definition:
The “size” of an infinite set is called “cardinality” of the set.

Natural(?) question:
Any pair of infinite sets have the same “cardinality”?
How can we compare them?
... design a one-to-one mapping!

Ex. 1. The following sets have the same cardinality:
Natural numbers (0,1,2,...), integers (..., -2,-1,0,1,2,...),
even numbers (0,2,4,...), primes (2,3,5,7,11,13,...),
rational numbers, Turing machines (= computable functions), ...
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4. Undecidability and Diagonalization

4. 2. Diagonalization

Definition:
A set is countable if it is finite or it has the same cardinality of natural numbers.
(In other words, countable set can be enumerated as “1st” “2nd” .

Ex. 1.1. ) e The ith even number is 2i
Even numbers are countable by
the one-to-one mapping 0 |1 ]2 |3 |4
0 2 4 6 8
Ex. 1.2. The ith prime

Observation:
Any subset of a

the one-to-one mapping:

Primes are countable by munn
2 3 5 7 11

countable set is also
countable
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4. Undecidability and Diagonalization

Exercise 2: Why we do not
use the ordinary
lexicographical ordering?

4. 2. Diagonalization

Definition:
A set is countable if it is finite or it has the same cardinality of natural numbers.

Ex. 1.3 Observation:
The set of 0/1 strings is countable by the lex. ordering: Any subset of a

g, 0,1, 00,01, 10, 11, 000, 001, 010, 011, 100, ... countable set is also
countable

Ex. 1.3.
Turing machines (and corresponding functions) are countable
because each machine can be represented by a binary string.
(In other words, they can be enumerated as 7, T, T,,...)

Natural question: Is there any uncountable set??
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4. Undecidability and Diagonalization

4. 2. Diagonalization

Theorem:
The set R of real numbers is not countable.

[Proof by diagonalization]
Assume that P is countable; i.e., they are enumerated as R={ R, R, R,, Rs, ... }

Each R;isinthe formof R;=...r, ) ri3s r)' riy' rio.ri1 i, rals- indecimal,
We define a number X = 0. x; x, X5 ... by Ex
x;=3if r,;=1,2,4,5,6,7,8,9,or 0 R, = 123.456...
x;=1if r;;=3 R,= 0.131313..
R, = 555.5555555...
Then Xis a real number, so it will appear as X=R;for somei. R,= 3.141592...

But x;is... 3? or 1?... we cannot decide it,
which is a contradiction! X=0.3133._

Therefore P is not countable!!
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4. Undecidability and Diagonalization

4. 3. Proof of undecidability via Diagonalization
[Theorem] The problem HALT is undecidable.

[Proof by diagonalization]
Let @ be a set of all computable functions (with one argument) .
Each element in @ corresponds to a Turing machine, that can be represented
in a binary string in X*.
Thus we can enumerate all corresponding binary strings as
by, b,, ..., b, ..
in the lexicographical order.
Thus, we can also enumerate all the functions in ®:

fufor s fio o

In other words, the set ®@ is countable!
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4. Undecidability and Diagonalization

4. 3. Proof of undecidability via Diagonalization
[Theorem] The problem HALT is undecidable.

[Proof by diagonalization]
Let @ be a set of all computable functions (with one argument) .
All the functions in @ is enumerable as f,, f,, ..., fi, ---
with corresponding strings by, b,, ..., b, ...
For the strings and functions, we consider the table of f(b;) as follows;

b, b, by ... b, b, b, by .. b,
fil1 €00 o0 fill 600 O
0 L1 € /0 0 1 €
f3 0 11 0 11 From the table, f3 0 11 L 11

we design a new function

frle € 1 0 The value of f{(b))
1 means “loop”
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4. Undecidability and Diagonalization

4. 3. Proof of undecidability via Diagonalization

[Theorem] The problem HALT is undecid” Then, g is a function.

If g is in @, it will appears as f, for some i.

[Proof by diagonalization] But f,(b,) is not defined properly.
Let @ be a set of all computable functi{ Thys gis not in @.

All the functions in @ is enumerable as That is, g is not computable!!

with corresponding strings by, b,, ..., | This function g is exactly the same as the
For the strings and functions, we consic. function computed by the program X!!

b, b, by ... b, b, b, by ... b,
f1 1 ¢ 00 0 From the table, fl 1 € 00 0
£l0 L1 g we design a new function g 10 0 1 c
0 110 11 f3/ 0 11 L 11
Js 0if f(b)=L ’
1 b )= | H e
......................... O Litsme L |
fele € 1 0 fele € 1 L
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[Proof by diagonalization (continued)]

If HALT is computable, we can compute the function g(x), as in
the same manner of the program X. However, g(x) is not computable.
Therefore, HALT is not computable. Q.E.D.

[ Our conclusion: The problem HALT is not computable. ]

o
@)

—

The number of functions is “greater” than

the number of computable functions.
)\ ‘/L

Diagonalization
Given a set G of functions, construct a function g
which does not belong to G.
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