Schedule(3%Y M F 7€)

11/24(Thu): Today
09:00-10:40 Ring, Field
12:30 (pls submit till 10:40...) deadline of Report (3) (L7R—k(3)§HE ] HH &);
13:30-15:10 Ans & Cmts by Duc, and Field, (Number Theory?)
e Last class (FR1Z M EEZ); I'll make questionnaire in the last 10 minutes

11/28(Mon): final exam (EAZREER) (by TA Duc)
40 points
Choices are;

Pens and pencils

+hand written notes

+copy of slides

+textbooks

+anything without electricity

ok wnh e
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Overview of Group=Ring=Field

Field

Like set of real numbers, arithmetic operations (+,—, X, /) can be defined
over the set.

Finite field

Sets consists of discrete and finite elements, and we can define arithmetic
operations.

In cryptography/coding theories, we need this notion since we cannot deal
with real numbers directly.

Ring

Sets without “identity element”, “inverse”, “commutative” for products in the
properties of fields

Group

Sets with one operation that satisfies “closed”, “identity element”, “inverse”,
and “associativity”.

Intuitively, group has + and —, ring has +, —, and X, and field has
+, —, X, and ./, respectively.
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1216 COMPUTATIONAL COMPLEXITY AND
DISCRETE MATHEMATICS
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Group (3)

Ring,
Homomorphism
(Homomorphism Theorem),
Axioms of Ring
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Isomorphism
e Consider two groups: G, = {0°,120°,240°}, G, = {f1, f>, f3}

+ | 0° |120°|240° o filfo | fs
0° | 0° |120°(240°| | fi | fi|fa S
120°| 120°| 240°| 0° fa|fol|fs|fi
240°|240°| 0° |120°| | fa|fs|fu|fo

e These two groups have the same property if you observe only the structure,
regardless of meaning G, of G, and .

 This relationship is called isomorphic
e ; and G, are isomorphic.
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B ZDULNT
«2DDZTEZSH G, ={0°120°,240°, G, = {f1, fo, f3}

+ | 0° |120°|240° o filfo | fs
0° | 0° |120°(240°| | fi | fi|fa S
120°| 120°| 240°| 0° fa|fol|fs|fi
240°|240°| 0° |120°| | fa|fs|fu|fo

¢ G EG,DEREREEICETCTEELFIZEE 5L, CD2ONDEITEL
EICIRAE\VET D

s ZCOBABRMNARYII DI EFFE ELVD
.« G, &G, IEFE
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Isomorphism map

Definition 10.1

For a group (G4,°) with operation o and another group (G,,*)
with operation *, when a mapping f: G; = G, from G4 to G,
satisfies the following, this is called isomorphism map

Va,b € Gy, f(aob) = f(a) = f(b), f is bijective

e If there exists an isomorphism map for G; and G,, G; and G, are
said to be isomorphic, and denoted by G; = G,.

e f associates two groups
* f(aob) = f(a)* f(b) means that two operators work the same.
 “f is bijective” means the order of two groups are the same.

10
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e £10.1

/,~§ é*%gﬁi(Gl;o)tlﬁiiﬁ E:]:%O :(Gz,*)‘ -L-_I-l.z—t G175\
SG,~NDERS: G, > G, MNUTEmI=9 &, f&6, 156,
~DEIREBEZRENS
Va,b € G, f(aob) = f(a) * f(b), [fHEHSE

c G EG,DEICRIEEBEGNFHET 5EFG6EGITRIETHLHE
LMY, G = G,ERT

s fIXR2DDEDXIZEERT S
e flaoh) =f(a)*f(DIE, EEFDRAZVNNELTHAOLETRT
o [FNEEEE I 20D0FEDHMMNEILTHAZETRT
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Homomorphism map

Definition 10.2

For a group (G4,°) with operation o and another group (G,,*)
with operation *, when a mapping f: G; = G, from G4 to G,
satisfies the following, this is called homomorphism map

Va,b € G,f(a°b) = f(a) * f(b)

Im f = {f(a)|a € G,}

* I[mage

e Kernel
Ker f = {a € G{|f(a) = 1(;2}
* Surjective
* For G, 3 Vb, there exists a € G; with f(a) = b.
* |njective
* ForG; 2 a,b,wehave f(a) =f(b)>a=b»b

12
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AEF£10.2
EFH T OB(G, ) EEFEAZFOH(G,, )L T, G156 ~D
BARf:G, > G, UTHFR-TEE, G IBG,~NDEREE G E

Ly
Va,b € G,f(a°b) = f(a) * f(b)
« &
Im f = {f(a)la € G}
- %
Ker f ={a € G{|f(a) = 1(;2}
. &5
e G, DVDIZHLT, f(a) = b&tidac G NTFETS
« Bi5}

* G; 2 a,bIZXLT, f(a) = f(b) > a=>b&iib

13
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Theorem of Homomorphism (1/3)

Theorem 10.1

Let f: G; = G, be a homomorphism from a group G, to another
group G,. Then we have the following:

(Df(16,) = 1q,

2)fla™) = f(a) 1 (Va e q)
(3)Im f is a subgroup of G,
(4)Ker f is a normal subgroup of G,

Proof of (1)
* f(101) = f(101 © 1G1) = f(151) * f(1G1)
e Applying f(lal)_l on both sides by *, we have f(lal) = 1g,.
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L£RIEB/KROEE(1/3)

TEIE10.1
G, = G, EG I SC,ADEREEH LTS 2D
Eé‘ (1)~(4)75\132U_L’J
(1)f(1¢,) = 1,
2)f(a™V) = f(a)” 1(‘v’a €G)
(3)Im fIXG, DERHE 'C&é
(4)Ker fIXG,DIERRENEHTH S
(1) DELEHA
f(lGl) f(161 © 1G1) f(151) f(lG )
MBI (1g,) %« CRETAE, f(1g,) = 16,518
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Theorem of Homomorphism (2/3)

Proof of (2)
For G, D Va, since G, is a group, we have a™! € G;.

By (1), since f(a) x f(a™) = flaca™) =f(1¢,) =
15, we have f(a™") = f(a)™!

Proof of (3)
ForIm f 3 Vf(a), f(b) with (a,b € G;), by (2), we have
fl@*f) "t =f@=*fb)=f(acb ™) EImf.

Therefore, Im f is a subgroup of G,.
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ARIBEELRDTEE(2/3)

(2) DEEEH
G, 3 ValZxL, G, XYa ! € G,
(DZEFMALT, f(@=*fl@D =flaeca™) =f(1g) =16,&Y, f(a™) =f(a)™?

(3) DFLEEA
Im f 3 Vf(a), f(B)IZxfLT(a, b € G;)
(2)&KY, fl@)«f(b) =f(a)*f(b™")=f(acb™) €EIm f HKYILD
&2T, Im fIEG,DEDNEHTHS
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Theorem of Homomorphism (3/3)

Proof of (4)

Let K = Ker f, and show the following two claims;

D K is a subgroup of G;.
For K 3 a, b, since f(a) = f(b) = 15, we have;
flaeb™) = f(a)* f(b™) = f(a) » f(B) ™" = 1g,
Thusaob™ ! € K.
Therefore, K is a subgroup of G4.

@G, >K
For G; © Va, by Theorem 9.2, it is sufficient to show
a 'Ka cK.
ForK 3 k,wehave f(a ™ tokoa) = f(a) ! f(k)* f(a)
=f@t*1g, * f(a) = f(@7' = f(a) = 1g,.
Thus we have a 'Ka C K.
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EREEBEZLRDOTEE(3/3)

(4) MDELERA
K=Kerf &LT, ULTFMD2D%ETRT
DKHG,DEREHTHD
K3ablZ®LT, f(a) = f(b) = 1¢, &Y,
flaehb™) =f(@*f(b™") =f(a)* f(b)™" = 1g, BRYILDT=8,
aob e KHL\A 5D
£oT, KNG, DE R EEIZIE S

@G, =K
G, 3 ValZxLT, TH9.2&Y, a 1Ka € K ZRE(EX KLY
K2kIZHLT, f(alokoa)=f(a)™ !« f(k)*f(a)
=f(a) ' *1g,*f(a) = f(@~ " * f(a) = 1;,
&£2T, a'Ka € KA REYILD
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Examples

Example of isomorphic map

R* = {ala € R,a > 0} is a group with respect to multiplication.
On the other hand, R is a group with respect to addition +.
Then the following is an isomorphic map:

f:RT - R

x +— logqo x

Example of homomorphic map

R* = {ala € R,a > 0} and R* is two groups with respect to
multiplication. Then the following is a homomorphic map:
f:R* — R*
X — x?
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R & E&R DA

R* ={ala e R,a > 0}I&, #EICEALTEHTHS. —7A, RIE, IE
+HICEALTHTHS. COLE, LTRREEERTHS

iRt - R

x +— logqo x

2ERIZBZDH
RY = {ala € R,a > 0}, RUR*IIEEICEALTHTHS. CDEE,
UTIIEREEBZRTHS
f:R* — R*
X — X2
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Homomorphism Theorem (1/2)

Theorem 10.2 (Homomorphism Theorem)

Let f: G; = G, be a homomorphism map from a group G4 to a group G,.
Then we have the following (1) and (2):

()G /Ker f =Im f
(2) Especially, if f is surjective, G, /Ker f = G,
Proof of (1)

Let K = Ker f. Then by Theorem 10.1(4), we have G; = K and hence a
residue class group G, /K is defined.

Now, for G; 3 a, b, we have the following;
fl@=fb) e flacb™)=1; ©acb™€KoaecK=boK (1)
We define a mapping from G /K to Im f as follows;
f:Gi/K —=Imf
aK — f(a)

Now we are ready, and it is sufficient to show that f Is an isomorphism.

22
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AERTITFE(1/2)

EH10.2 (EREFEHE)
¢« £:1G1 > G EGHOHGADERBERETSD. ZDEE, (1), 2D
XYL D.
(1)G{/Ker f =Im f
Q) %12, fFHAEFELIE, G /Ker f = G,

(1) DEIEEA
. K;Z‘I)(er fETBE TH1014)KYG, = KLY, BIREG, /KNES
—G
« CCT, G, 3ablTLTUTARKYILD
f@=fb) e flaeb™) =15, @acb™ €K acK=boK (1)
« G /K DB Im f ADEBRZEZRDELIICEERT S
f:Gi/K = Imf
aK — f(a)
« EENES-DOT, BIEADRBEBZRTHLAZLERE LKL

23
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Homomorphism Theorem (2/2)

Proof of (1) (Continued)
Surjective by;
ForIm f 3 Vf(a), since f(aK) = f(a), Im f = Im f.
Injective by;
For G /K 3 aK,bK, by Eq. (1), f(aK) = f(bK) = aK = bK
Homomorphism by;
f(aKbK) = f(abK) = f(ab) = f(a)f(b) = f(aK)f (bK)

Therefore, f is isomorphism, and G, /Ker f and Im f are isomorphic

Proof of (2)

It is sufficient to show that Im f = G, (of same cardinality).
It is clear by the assumption that f is surjective.
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AR BITFI(2/2)

(1) DEEEA (DD F)

5T RYRYILD

Im f 3 Vf(a) IZXLT, f(aK) = f(a) THADT, Imf =Im f
BEAIELUTXRYBRYILD

G,/K 2 aK,bK IZRLT, (1) &Y f(aK) = f(bK) = aK = bK
HERBIFLUTKRYKYILD ) )

f(aKbK) = f(abK) = f(ab) = f(a)f(b) = f(aK)f (bK)

£oT, FORIEE/BRTHY, G /Ker f &£ Im f ITRETHS

(2) DELEFA
e Im f = G, GREMNFLL) ZEZTERE+7
s fREFEWLSREXYBALGH
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Exercise

For a mapping m:Z —» Z/37Z (x » x mod 3) over (Z, +);
(1) show that 7w is homomorphic.
(2) find Ker .
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(Z, ) EDESEn:Z - Z/3Z (x » x mod 3)IZHLT, ULTFIZEAEX
(DrIFERBTHS-I LT TE
(2)Ker nZ&3kRH &
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Axioms of Ring

Definition 10.3

Let R be a set such that two operators of addition and
multiplication are defined. Then R is a ring if it satisfies
the following conditions;
(1) (R, +) is a commutative group, that is,

(D Associative law

2 Commutative

@ Identity element 0

@ Inverse
(2) For multiplication o, we have the following;

(1) Associative

@ Identity element 1

@ Distributive property for operation +

m=a ><b+a><c}

28
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I ADMNE:

« £F10.3
MEEFEEVL D2 DD EENDEEINT-E/RMNIETHH LI,
RINRDEHZiH-I ETHS.
(1) (R, D)L TH S
@ EEERIMEYILD
@ 3 ERIA YLD
@ EfItordhd
@ HTHhH B
(2) F’iEolZDNNTRODEEMNKYILD
D #EEEBIDEYILD
@ HEiim1ihdhd
SEE+EDMIZ, HERERIAKYIID

aX(b+c)=a Xb+axXc

29
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Property of ring

Definition 10.4

Foran R 3 a, ifthereisa R 2 b # 0 with ab = 0, a is called zero divisor.
0 is a zero divisor.

Definition 10.5

If ring R has no zero divisor except O, that is, if we always have
a+0,b+0=ab#0,Riscalled integral domain.

Commutative ring

Ring that also satisfies commutative low for multiplication
Module

Group for addition
Additive identity

Identity element in module (identity element in a group for multiplication is
just called identity element.)

30
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E#10.4
IBR 2 alZXLT, R2b #0Tab = 0EHBTNFEETREE, ar
ERFELS. 0VFEHFTHS.

FE#10.5

IRRODOUNDEBERFZFZEFLIESE, 45, a#0,b # 0= ab # 0ONFIZRLY
IIDEE, REEEEXA.

AJ{RIR

IROANBIZIMAT, FEOXRBEAZFH-TIROZE
nEf

MEICET 58
=T

INEFDEALTT (FEBFDEMITIFEIZHEAUITELS)
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Examples of ring

Example 1
(Z; +,X) is a ring.

Example 2
(R; +,X) is a ring.

Example 3

Z. is an integral domain.

32
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I= D1

{511

(Z; +, X)X IZTHSH
1512

(R; +,X)IFIERETH S
1513

LIIBIHETHS
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Subring

e If a subset S of a ring R satisfies the following, we call S a subring of R.
MDabeS=a—-beS
@a,beS=abeS
@1, €S

 Inaring R, if an element R 3 a has its inverse for multiplication, that is,
if there is an element b € R with b = ba = 1y, a is called a regular

element or unitary element, and we denote by b = a™ 1.

e For a commutative ring R, the set of elements having inverse generates
a group for multiplication. This group is called group of units of R, and
denoted by R* or U(R).

34
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 IRRDEPHEESSHROEHFE-TEE, SIXRDEHIRERTHHELD
MDa,beS=a—-beES
@abeS=abeS
@1 €S
« IRRIZE VT, R a”FEEICEALTH TR L DEE, 945, ab =
ba = 1,,%%b € ROBEET HEE, alXERITHAWNIETTHDHEL
LY, b =a 1¢&EKL
e AIMIRRICE T, FBICEHLTHETZEL 2R DESIIIEICELTE
109 . COBZROETELELL, RFHBAWNIU(R)ERT.
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Exercise (10)

Dx>0DEZf(x) =1, x <0DEZf(x) = —1ITE>TEENDEZ
Nbd. COEBZRD, JEHRIMOEER{L -1INDEREEZRTHS
— &%t (We have a mapping defined by f(x) = 1(x > 0) and f(x) =

— 1(x < 0). Prove that this mapping is a homomorphism from multiplicative

group R* to multiplicative group {1, —1}.)

(2)Z[i] = {a + bila,b € Z}(FT IV ADEBEIREWND) FIRTHDH. CNHE
HTHH_EZ . (Z[i] = {a + bila,b € Z} is a ring. Prove that this is an
integral domain.)

117



