Schedule(3%Y M F 7€)

11/24(Thu): Today
09:00-10:40 Ring, Field
12:30 (pls submit till 10:40...) deadline of Report (3) (L7R—k(3)§HE ] HH &);
13:30-15:10 Ans & Cmts by Duc, and Field, (Number Theory?)
e Last class (FR1Z M EEZ); I'll make questionnaire in the last 10 minutes

11/28(Mon): final exam (EAZREER) (by TA Duc)
40 points
Choices are;

Pens and pencils

+hand written notes

+copy of slides

+textbooks

+anything without electricity

ok wnh e
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ldeal

Hereafter, we assume that R is commutative ring.

Definition 11.1

When a subset I of a ring R satisfies the following two conditions, I is called an ideal
of R:

MDIsbc=>b+ceEl
@R>or,Iob=>rbel

Theorem 11.1
An ideal I of aring R is a submodule of R for addition.

Proof
It is sufficient to show that I is a subgroup, thatis, a c b™! € I for Va, b € I.
By @), we have (—=1)b € [ forR 3 —1,1 3 b.
By D, we havea + (=1)b €I forl 3 a,(—1)b
Therefore, I is a submodule of R for addition.
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ATTIL

LR, RIFEMIZDHZEH/RICEICT S

FFE11.1
IRROEDEBIDRD2DODEHRZEH=-T EE, IFRDATTILELD
MDIsbc=>b+ceEl
@R>or,Iob=rbel

EIE11.1
IBROATT7ILIIE, IEICEALTROEPHLMETH S
slEAA
ERBEETHAHIE, Thbbva b ellIZxLTaecb ! € [ZmtEIELLY
@d&Y, R>—-1,1 3 bIZxLT(-1)b € INBYILD
D&Y, I 3 a,(—1)bIZRHLTa+ (=1)b € INKYILD
YEIZKY, HEMEIZEALTROEB S MEETH S
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Principal ideal

Theorem 11.2

ForanelementainaringR, (a) = aR = {ar|r € R} is an ideal of R (this aR is a
principal ideal generated by a).

Proof

ForaR = {ar|r € R} 3 ary,ar,, R 3 r3,since we havear; + ar, = a(ry +1r,) €
aR, ry(ary) = a(r;r3) € aR, aR is an ideal.

Definition 11.2
When any ideal of a ring R is a principal, we say that R is a principal ideal ring.

Example 11.1
For ring of integers Z, describe the following ideals as principal ideals;
(2) =2Z
(3) =3Z
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HIE/TTIL

EHE11.2
IRRDITal=xfL T, (a) = aR = {ar|r € R}F, RDATTFIVIZIESH(ZDaR%aTHE
BENTF=EIEAT7ILELND).
sl BA
aR = {ar|r € R} 3 ary,ary, R 3 r3IZHLT, ary + ar, = a(r; +1,) €
aR, r;(ary) = a(ryr3) € aRKY, aRIFATTILEG D
EE11.2
RROBEEDATTILNEBEIBEATTILTHAESE, RIFEEATT7ILIRTHDHELD

fA11.1
BHIRZIZEWT, DA TT7IVEFBHIBATT7ILELTRE
(2) = 2Z
(3) = 3Z
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Definition of Euclidean ring

Definition 11.3
For a ring R, if there is a mapping @ (¢: R - {0} UN) from R to {0} UN and
they satisfy the following two conditions, R is called Euclidean ring.

@DR3a+#0= ¢(0) <¢pa)
@ForR>a# 0,R 3 b, there exist q,7 € Rsuchthatb = aq +r,¢(r) < ¢(a).

Example 11.2

The ring of integers Z is Euclidean ring. The following mapping from an integer a to
its absolute value with Z, they satisfy these two conditions of the Euclidean ring.
¢:Z—->{0}UN (a+— |a])
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FuclidiR D EFHE

EF11.3
IRRM{0} UNANDEZe(p:R -» {0} UN)DBH T, D2 DD FEHZiET-
JEE, RIFDA—V)IFIRTHDHELD.
DR3a+0=¢(0) < ¢(a)
@R2a#0,R3b%BIX, b=aq+71,00) <p(a)ZFiEl=9q,r € RBFHET S
111.2
BRIRLZILA—VVIRIRTHD. BRalSHL TEZDERMEZRICSE DR
NDEBEEZDE, ZFA—0)IRBROEHEE-T.
@:Z—-{0}UN (a— |a|)
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Theorem for Euclidean ring (1/2)

Theorem 11.3
Any Euclidean ring is a principal ideal ring. (Any ideal in an
Euclidean ring is a principal ideal.)

Proof
Let R be an Euclidean ring, and I its ideal.
Since R is an Euclidean ring, there exists ¢: R —» {0} U N.

Letting S = {@(x)|I 2 x # 0}, since S € {0} UN, S has a minimum
element. Let @(a) (a € I) be this minimum element. We show that
I = aR
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FuclidizRDEIE(1/2)

TEIE11.3
A—7)FRIFEEAT7IVIRTHS (A—VYRIRODERDAT 7 IVIEEIRA
TT7ILTHD)
sl AA
REA—V)YRR, IZZEDATTILET S
RBA—91)yRIR&KY, ¢:R > {0} UNMBEFEET S
S={p)|I 2 x # 0}&HKE, SS{0}UNKY, SIZITZR/NMNDTMNFE
NExpla) (ael) &BL
RR—UTI=aR &Y
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Theorem for Euclidean ring (2/2)

Proof (continued)
M I >aR:
Since aR is a principal ideal, it belongs to I.
@1 caR:

For I 3 b, by the property of an Euclidean ring, there exist g, € R that
satisfyb = aq +r,9(r) < @(a).
By I 3 b,aq, we can say that r = b — aq is also an ideal.

By the assumption that @ (a) is a minimum element in S, to satisfy both
of r € I and @(r) < @(a), it should be that r = 0.

Therefore, b = aq € aR
By W®@), R is a principal ideal.

By Example 11.2 and Theorem 11.3, the ring of integers is a principal ideal.
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FuclidEz D EIE (2/2)

ZEEBA(DDF)
DI > aR:
aRIFEIEATT7ILTHADTHAIZETEND
@1 caR:

I3 bIZHLT, A—VUVFIRDEEXY, b=aq +7,0() < p(a)&iml=7
q,7r € RDFET D

I3b,aqkV, r =b—aqbATT7ILELED
P(A)DSADTR/NDITTHAEND, r € IMDe(r) < p(a)ZFiml=9IZIdr =
0LLs+ Y F7ELY
&>7T, b=aq €aR

D&Y, RIFBEIBA/TTILIRTHD

Fl11.2LEHE11.3&Y, BMIRIIBEIEAT7ILIRTHS
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Factor ring (1/2)

Theorem 11.4

Let I be an ideal in a ring R. For the set R/I of residue classes

modulo I, we define addition and multiplication as follows; that is,

for any elements a, b in R, we define the following operations.
a+b=a+b, a-b=a-b

Then for these operations, the set R/I of residue classes is a ring.

Proof
We show that R/I = {g + I|g € R} is aring.
Since I is a normal subgroup of R, R/I is quotient module and
commutative group.

@D (Closure)ForR/I3a+1L,b+1,(a+ D+ b +D=(@+b)+1€R/I

@ (Associative)ForR/I 2 a+1,b+1,c+1, (a+I+b+D+c+I=a+1+
(b+I+c+1)

@ (ldentity element)For R/I 3 V(a + 1), sincewehave (a +1)+1 = a + I, there s
an identity element I € R/I.

@(Inverse)For R/I 3 V(a + 1), thereis(—a+1) ER/Iwith(a+ 1)+ (—a+1) =1I.

16
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FRwIm (1/2)

FiH11.4

IZIRRDATTIVET B, 1ZEETHREIREBEADESBR/IICHLT,

MEEREZRDEIIZEET D, 45405, RDJta, bITXLT, LTz

EETDE, ChoDEEICELT, BREOLER/IIFEICES.
a+b=a+b, a-b=a-b

sIEBH
R/I ={g +1|g € RINRIZIZHLETRT
IIZRDIEFRER S (D) BT/ AD T, R/ITE S (D) M DE[HLEFE15D

®(5§/§%’J:F‘a§]b’cﬁﬁuém/1 Sa+Lb+IZRLT, (a+D+B+D=(a+b)+
[ €R/I

QUEEEIR/I2a+Lb+1,c+IIZHLT, (a+I+b+D+c+I=a+1+
(b+I1+c+1)

Q(EAITT(BT) DEE)R/ISV(a+DIZHLT, (a+D+1=a+1E55DT,
FItl € R/IDFE

@DGETDIFE)R/IIV(a+DIZDWT, (a+ D+ (—a+ 1) =1&%5(—a+]1) €
R/IDTETE

17

/18



Factor ring (2/2)

Proof (Continued)
For the multiplication -, it is sufficient to show the following properties.

@ (Associative) ((a+ D -(b+1D))-(c+D=(@+D-(b+1)-
(c+ I))
@ (Commutative) Trivial because it is commutative ring.
@ (Identity element) Since (a +1)- (1 +1) = a+ 1,1 + I is the identity
element.
@ (Distributive) (a+ 1) - ((b+D+(c+D)=(a+D-((b+c)+1)=
a-(b+c)+I=a-b+a-c+I=(@-b+D+@-c+1)=@+1])-
b+D+@@+1):-(c+1)

When a, b € R satisfya — b € I, we denote by a = b(mod I).

Since R/I is a ring, the multiplicative inverse (a™1 + 1 € R/I) does
not necessarily exist

18
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FRIR(2/2)

ZEBA (DDF)
Tk [CTOVWVTROMELRYIIDIEETE (XKL
@ #EEEZEED (a+D-b+D)-(c+D=(@+D-(b+D-(c+D)
@ (Z#u%R]) ATIRKYBRS A
@ (BfIm) (a+D-A+D=a+1&Y, 1+ IHERTT

@ (HEGEED (a+D-(b+D+(c+D)=(a+D-((b+c)+1)=
a-(b+c)+I=a-b+a-c+l=(@-b+D+@ c+D=(a+I])-
b+D+@@+1)-(c+1)

a,bERMa—beltifbsE, a=b(modl) EEL

R/IIIIRETHAH=0, |EH X (a 1+ 1 e R/) DT FEET HEFE
EYA A

19
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Example of factor ring (1/2)

The ring Z of integers is a commutative ring.

In the factor ring of Z modulo an ideal mZ, for two integers a, b, we denote
as follows;

a—b€EmZ < a=>b(modm)

The reminder r of an integer a divided by m # 0 satisfies0 <r <m —1,
and hence the number of residue classes modulo m is m.

Example 11.3

The residue classes modulo 3 are the following three subsets;
37 = {---,—3,0,3, - }
1+3Z=1{-,-2,1,4,---}
2+ 3Z={-,-1,2,5,-}
Since 3Z is an ideal, Z/3Z is a factor ring.
How can you represent Z/3Z by representative elements?
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FRIRDHI(1/2)

BYURLIIFIHLIZTH D

%_0)’(7_37)me’&)5|3L\T:ﬁll‘,—‘l%i%f*li, 28 %a, bITKH LT, LTDOLIITEK

a—b€mZ < a=>b(modm)

BHazm + 0TE|>-RYriZo<r<m-1THAND, mExELI-E
RBIIMBEFET S

5111.3
3% EEL-BREIL, LULTOD3METHD
3Z — { , _3’0,3’ }
1+3Z={,-214,-}
2+4+3Z=1{,-1,25,}
3ZIFAT7IVIEDT, Z/3ZILEIFKIR
7/37%XFTITTTEKRI &E?
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Example of factor ring (2/2)

In the case of Z/37Z = {6, 1, f}:
The (multiplicative) inverse of Z/37Z 3 27

Reduced residue classes modulo 3: U(Z/3Z)
U(Z/37) = {Z/37 3 ala™! € Z/3Z} = {1,2} = Z/37Z \ {0}

Zero divisor?
In the case of Z/47 = {6, 1,2,3 }:
The (multiplicative) inverse of Z/47Z 3 27?

Reduced residue classes modulo 4: U(Z/47Z)
U(Z/AT) = {Z/AZ 3 ala™t € Z/4T} = {1,3}

Zero divisor?
How about Z/57Z,7Z/6Z?
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FREBDHI(2/2)

Z/3Z =1{0,1,2}Di54E
Z/3Z3 20 (FiX)H Tl ?

3ZHRET HBMNRIRIEBO A U(Z/3Z)
U(Z/3Z) ={Z/3Z 3 ala! € Z/3Z} = {1,2} = Z/37Z \ {0}

ZERFIE?
Z/4Z ={0,1,2,3 }Di&&
Z/AZ 2 20D (FEX) Tl ?

ARk HBNBEIREBEOEK: U(Z/AT)
U(Z/AZ) = {Z/4Z 3 ala™! € Z/47Z} = {1,3}

ERFIF?
Z/57,7.)]6ZDI5EF ?
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Lemma for factor ring

Lemma 11.1
For a factor ring Z/mZ (m > 1), we have the following;
(1) If Z/mZ has a zero divisor different from 0 © m is a composite
number
(2)Z/mZ is an integral domain © m is a prime

Proof of (1)
(=)
Assume that Z/mZ has a zero divisor not equal to 0.
Now a - b = 0 (mod m) for some pair of integers a,b (1 < a,b < m).
Sir;ce a-b =0 (modm), gcd(a-b,m)=m > 1 (great common divisor is
m
Therefore, we have gcd(a,m) > 1 or gcd(b, m) > 1.
If gcd(a,m) = d > 1, since d|m, m is a composite number.

(&)
When m is a composite number, there are two integers m > d,t > 1 such
that m = dt.

Thensince Z/mZ 3 d,t (d # 0,t # 0) and dt = 0 (mod m) , both d and
t are zero divisor different from 0.
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FRIZDFHRE

fHRE11.1
E|RIRZ/MmZ (m > DIZBWLT, LTFHARYILD
(DZ/mMZHN0LERLGLHBERFEHD © mIIERHE
()Z/MIMEBETHD © mITEH

(1) DEEFA

(=)
Z/mILH0ERGFLHFRFZRHDETD
a-b=0(modm)tiEbdEHMa b(l<ab<mDEETS
a-b=0(modm)&Y, gcd(a-b,m) =m > 1(TwRRXAHEHM)
&2, gcd(a,m) > 1FEf=ldged(b,m) > 1HRKYIID
gcd(a,m) =d > 1&E95E, dm&kY, mIEERBTHS

(<)
mEERMET HE, m = dtblGDEBHm > d, t > INFETS

Z/mZ > d,t (d+#0,t # 0) ™D dt =0 (modm) &Y, dBLUtH
0LELGDAFREF
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Field

Definition 11.4

For a commutative ring R, if all elements except additive identity O are
all regular elements, R is called field.

The set QQ of rational numbers, the set R of real numbers, and the set
C of complex numbers are all fields.

In a field K, every element except O has its inverse. Therefore, the
group of unit K* of K coincides with K — {0}. (K" is called
multiplicative group of the field K.)

The field of finite order is called “finite field” or “Galois field”.

Factor ring Z/mZ s a finite field IF,, of order p when m is a prime p.
In coding theory, they use "GF(p)“, but they use "IF,,“ in number theory.

26

/18



Z3

TEF11.4
ARIRRDFJFITTOLN DTN I R TEEICEALTIER] T
THAEE, REARELS

AEHLKOELQ ENLHOEAR ERMLKOEECES
RTHTHS

ARKIZBEWT, 0N D TIE B TEHEDOND T, KOETTEFK XK —
(0} E—ET B (K TIAKDFEEFEESLS)

KL E R D IARZEF R (finite field) £1=(EH O 7 1A (Galois field) &
LD
RIRIRZ/MLIE, mAFRBpDESUBpDAERIAF, 2735

SR TIXGF(p)ZEIA, BHERTIEF,ZED
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Lemma for field

Lemma 11.2
A factor ring Z/pZ is a field for a prime p.

Proof

ForZ/pZ 3 VYa (a # 0), we have gcd(a,p) = 1. Thus
there exist integers x and y with ax + py = 1 (by
extended Euclidean algorithm, which | have no time to
explain...)

Then since ax = 1 (mod p), x (mod p) is an inverse of a
in Z/pZ.

Thus we have that any non-zero element is a regular
element. This implies that this is a field.
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ZOL N

fHRE11.2
RHpI T BEIRIRZ/pZ 1K TH S
z1F BA

Z/pZ 3 Va (a # 0) IZXLT, ged(a,p) = 15D T, ax + py = 1Z @3
B, yDFEETSILEL—V)VRERREGRBATEEFEATLE) &KVY)
ZDEZE, ax =1 (modp)&Y, x (mod p)IE, aDZ/pZ L DHETTIZH S
PZIZ, BERUNDEEDTHAIEAITT (B IT) HED THIZHES

29
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Theorem for field

Theorem 11.5
A field is an integral domain.

Proof

It is sufficient to show that, for any elements a, b in a field K, we
have ab = 0,a # 0 = b = 0. Lettingab = 0,a # 0, since K is a
filed, there is a multiplicative inverse of a € K;
al(ab)=a1-0
(a la)b =0
b=20
Thus we haveab =0,a+#0=>b=0.

We note that inverse of Theorem 11.5 does not hold;
For example, Z is an integral domain, but it is not a field.
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1Ll

KDOTEE

FEIE11.5
KITEEHTHS
sl BH
AKDIEEDTa, bIZXLT, ab=0,a # 0= b = 0 ZRrE(X &KLY
ab=0,a#0&95E, KIFMAKRLGEDTa e KDFEEFTHNEFEET S
al(ab)=a1-0
(a la)b =0
b=20
&2T,ab=0,a#0=b=0IRENhT-
W (F R AL =750
BZIE, ZIZBETHAMNETIEAL
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Characteristic

For a field K, if there is an integer n such that the summation of n 1s
makes 0; then the minimum number of them is called characteristic of

the field K, and denote it by ch(K).

If you have no upper bound the number of 1s to make 0, the
characteristic of the field K is defined by O.

The fields of rational numbers Q, real numbers R, and complex
numbers C are O.

The finite field IF,, is of characteristic p

Example 11.4
Z./37Z = F4 is a finite field with ch(F;) = 3
Ch(]FS) =5

Ch(IFp) = p (p is a prime)
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EKIZEWT, nfAEDQ1OF:1 + - + 150&725 KOG EEH
HAEE, TOIR/NDEZEIAKDIZEL (characteristic) LMY, ch(K)&
=9

W<DMATHOIZAEDRNESE, (KK DIFHIF0

BEYAQ EHAR, EREBIACOEHKILO

A IR AF, O (£p

5l11.4

Z/37 = F3|XBRIKT, ch(F;) =3
ch(Fs) =5
ch(F,) = p (pIEFHE)
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Prime field

For a prime p, the finite field GF(p) = {0,1,2,---,p — 1} (= Zp) of order p is
called prime field, it can be constructed easily by a system of residues
modulo p.

Additive inverse of Z,,
Defineasa + b = a + b (mod p)
The additive inverse —a is definedby —a =0 (a =0),—a=p —a (a # 0)
Multiplicative inverse of Z,
Defineasa b = a- b (modp)
For Va € GF(p) — {0} (= Z;), we have two integer b and c witha-b+c-p =1,
thus we define the multiplicative inverse of a by b.

Example
Check two tables for addition and multiplication for GF(5).
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*RIK

BHAREpDARIKGF(p) ={0,1,2,--,p — 1} (= Z,) IFFR A ELITA,
pEiEET HREIRBEBEZRAWVASEICEYBRZITHRTES
L, £ DINiEETT
a+b=a+b(modp) TEE
ZDEE, MEDHT—ald, —a=0(@a=0),—-a=p—a (a+0)
L, £ DFEETT
a-b=a-b(modp) TEE
Va € GF(p) — {0} (=Z;)IZLT, a- b+ c-p =1 EibT=TEHD, cHALTHFE
I 51=8, bMNaDFEEHTIZES
5l
GFG)DIENEREREFEZDERER
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Exercise 11

EIRIRZ/12Z = Z,DIEAITTE L UVFRFZEZETKDH K. =12
L, a+ 12ZOKFITZFat9 5. (Find all of invertible elements
and zero divisors of a factor ring Z/127Z = 7Z,,. Note that the
representative element of a + 12Z is denoted by a.)
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