
I216E: Computational Complexity and Discrete

Mathematics

Answers and Comments on Report 3

HOANG, Duc Anh (1520016)

November 24, 2016

Ph.D Student @ Uehara Lab

Japan Advanced Institute of Science and Technology

hoanganhduc@jaist.ac.jp

mailto:hoanganhduc@jaist.ac.jp


Problem 1

Let S = R \ {−1} and consider an operation defined by a ◦ b = a+ b+ ab. Then prove that

“◦” is an operation on S. Here, we suppose that arithmetic operations over R are defined.
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Problem 1 (Answer)

It is sufficient to show that if a, b ∈ S then a ◦ b = a+ b+ ab ∈ S. In other words, we need to

show that for a, b ∈ R, if a 6= −1 and b 6= −1 then a ◦ b = a+ b+ ab 6= −1.

Assume that there are some a, b ∈ R with a 6= −1, b 6= −1 and a ◦ b = a+ b+ ab = −1. It

follows that a+ b+ ab+ 1 = (a+ 1)(b+ 1) = 0, which implies that either a = −1 or b = −1,

a contradiction.
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Problem 2

In the problem 1, prove that (S, ◦) is a group. (Not need to prove “Closure.”)
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Problem 2 (Answer)

We show that (S, ◦) is a group by definition.

• Close under the operation “◦”: see Problem 1.

• Associative: We check that for a, b, c ∈ S, (a ◦ b) ◦ c = a ◦ (b ◦ c). Indeed, we have

(a ◦ b) ◦ c = (a+ b+ ab) ◦ c
= (a+ b+ ab) + c+ (a+ b+ ab)c

= a+ b+ ab+ c+ ac+ bc+ abc

= a+ (b+ c+ bc) + a(b+ c+ bc)

= a ◦ (b+ c+ bc)

= a ◦ (b ◦ c).

• Identity element: 0 ∈ S is the identity element, since for any a ∈ S,

a ◦ 0 = 0 ◦ a = a+ 0 + a.0 = a.

• Inverse element: For a ∈ S,
−a
a+ 1

∈ S is the inverse element of a, since

a ◦ −a
a+ 1

= a− a

a+ 1
− a2

a+ 1
= 0.
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Problem 3

Let G be an Abelian group and k be a positive integer. Prove that G(k) = {xk ∈ G | x ∈ G} is

a subgroup of G. Here, you can use (a · b)n = an · bn for a, b ∈ G when G is an Abelian group.

Recall that

Theorem 8.3

Let H be a nonempty subset of a group G. Then H is a subgroup of G if and only if H

satisfies the following two conditions (1) and (2):

(1) ∀a, b ∈ H ⇒ a · b ∈ H

(2) ∀a ∈ H ⇒ a−1 ∈ H

Moreover, two conditions (1) and (2) are equivalent to the following single condition:

(3) ∀a, b ∈ H ⇒ a · b−1 ∈ H
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Problem 3 (Answer)

We use Theorem 8.3(3) to show that for an Abelian group G and a positive integer k,

G(k) = {xk ∈ G | x ∈ G} is a subgroup of G. That is, we show that for a, b ∈ G(k),

a · b−1 ∈ G(k).

From the definition of G(k), a = xk ∈ G and b = yk ∈ G for some x, y ∈ G. Our goal is to

show that xk · (yk)−1 ∈ G(k).

First of all, we prove that (yk)−1 = (y−1)k. Let e be the identity element of G. Since yk ∈ G,

e = yk · (yk)−1. On the other hand, e = ek = (y · y−1)k = yk · (y−1)k. Therefore,

e = yk · (yk)−1 = yk · (y−1)k, which implies that (yk)−1 = (y−1)k (multiply both sides by

(yk)−1 from the left).

Thus, xk · (yk)−1 = xk · (y−1)k = (x · y−1)k.

Therefore, to show that xk · (yk)−1 ∈ G(k), it is sufficient to show (x · y−1)k ∈ G(k).

• x · y−1 ∈ G, because x, y ∈ G.

• (x · y−1)k ∈ G, because xk, yk ∈ G and (x · y−1)k = xk · (yk)−1.
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Problem 4

Prove that the group whose order is a prime number is a cyclic group without proper subgroup.

(Hint: Prove it is a cyclic group, and it does not have a proper subgroup.)
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Problem 4 (Answer)

Recall that

Lagrange’s Theorem

Let G be a finite group, and H a subgroup of G.Then

(1) |G| = |G : H||H|, that is, |G : H| = |G|/|H|
(2) Both of order and index of H divide the order of G.

Let G be a group whose order |G| = p for some prime number p. Let e be the identity element of

G. Then,

• G is a cyclic group.

Let a 6= e be any element of G and let H = 〈a〉 = {an | n ∈ Z}. Then, H is a cyclic subgroup

of G. By Lagrange’s Theorem, |H| divides |G| = p. Since p is a prime number, |H| is either 1

or p. Since a 6= e, |H| 6= 1, i.e., |H| = p. Hence, H = G, that is, G is a cyclic group.

• G does not have a proper subgroup.

Assume that K is a proper subgroup of G, i.e., K is a subgroup that is different from {e} and

G. By Lagrange’s Theorem, |K| divides |G| = p. Since p is a prime number, |K| is either 1 or

p. That is, K is either {e} or G, a contradiction.
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Problem 5

Let H be the subgroup of a group G. Prove that H is a normal subgroup, when H has the

index 2. (Hint: It is better to divide into a ∈ H and a /∈ H.)

Recall that

Normal subgroup

A subgroup N of a group G satisfies the following, N is said to be a normal subgroup of G,

and denoted by G . N .

aN = Na (∀a ∈ G).

Index

• When G/H is a finite set, so H \G is, and the number of the left and right congruent are

equal to each other.

• This number is denoted by |G : H| and called index of H on G.

• When |G : H| = 2, we have G = a1H + · · ·+ anH.

• Especially, note that |G : {e}| = |G|, |G : G| = 1.
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Problem 5 (Answer)

Let H be the subgroup of a group G with |G : H| = 2. We prove that H is a normal subgroup

by definition, i.e., we show that for every a ∈ G, aH = Ha.

• Case 1: a ∈ H.

Since a ∈ H, it follows that aH = H = Ha.

• Case 2: a /∈ H.

Since |G : H| = 2, we have G = H + aH. It follows that aH = G \H. Similarly,

Ha = G \H. Therefore, aH = Ha = G \H.
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