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Computational Complexity

e Goal 2:

— How can you show “Difficulty of Problem”

* There are intractable problems even if they are
computable!
— because they require too Many resources (time/space)!
 Technical terms;
The class NP, P#NP conjecture, NP-hardness, reduction
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5. Computational Complexity

e Observation of the classes

Definition: Class P
SetLisintheclass P <
There exists a poly-time computable predicate R such that
for each xO %, xO L < R(x)

Definition: Class NP
Set Lis in the class NP =

There exists a poly g and a poly-time computable predicate R such that
foreachxO %, xO L= 0O wO 2%: |w|O g(|x|)[R(x,w)]

Definition: Class coNP
Set L is in the class cONP =
There exists a poly g and a poly-time computable predicate R such that
foreachxO 2%, xO L= wO Z": |w|O g(]x|)[R(x,w)]
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6. Analysis on Polynomial-Time Computability

6.2. Completeness

There are two ways to prove (NP-)completeness:

1. show ‘for all I according to the definition
. Cook’s Theorem; he simulated Turing machine by SAT in 1971!

: Basically...
Easy to handle since, e.g., 1 F in standard f
3SAT has a uniform structure. ' _Or any program 'n stahdard torm,
2. simulate it by SAT formulae
T > pretty complicated and tedious

2. use some known complete problem as a seed

. 3SAT$E’1 DHAM,|3SAT <" VC,...
e  Thousands of NP-complete problems are reduced from 3SAT!

. E.g., from “DHAM is NP-complete for general graphs”, we have

— DHAM is NP-complete even for planar graphs max
DHAM is NP-complete even for graphs with max degree=3 4 degree=5

— DHAM is NP-complete even for bipartite graphs...
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6. Analysis on Polynomial-Time Computability

6.2. Completeness

Theorem VCis NP-complete
[Proof] Since VC O NP, we show 3SAT <" VC.

For given formula F(x,,x,,...,x,), we construct a pair <G, k>
of a graph and an integer in polynomial time such that:

There is an assignment that makes F()=1
<= G has a vertex cover of size k

Construction of G (F has n variables and m clauses):

1. add vertices x;*,x; and the edge (x;*,x;) for each variable x; in F

2. Foreach clause C=(/,U [l [3) in F, add vertices I, I;5, I;; and three
edges (i, 1), Ui lis), (li3,1)

3. addthe edge (/,,,x;) if the literal [, is x, or add (/;,x;) if it is —x;for
each clause C

4. letk=n+2m
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Theorem VC is NP-complete

There is an assignment that makes F()=1
= G has a vertex cover of size k

Construction of G (F has n variables and m clauses):

1. add vertices x;*,x” and the edge (x;*,x;) for each variable x; in F

2. Foreach clause C=(/,11 [,01 [3) in F, add vertices [;;, I, [; and
three edges (/.,,1,), (1,.13), (5,1,1)

3. addthe edge (/,,x*) if the literal /,; is x, or add (/.,,x;) if it is —x;for
each clause C,

4. letk=n+2m

Ex: Flxyx0,x3,%,) = (%0 x,0 x3) 0 (U x50 x, )0 (x, 00 =50 x,)

k=442 X 3=10
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Theorem VC is NP-complete

It is easy to see that the construction of G from F can be done in polynomial
time of the size of F. Hence, we show that...

There is an assignment that makes F()=1
= G has a vertex cover of size k

From the construction of G, at least one of x* or x-
/ 1

any vertex cover S should contain o
at least 2 of 3 vertices in C;

Hence we have |S| O n+2m = k.
We have no extra vertex!!

Ex: Flxyx0,x3,%,) = (%0 x,0 x3) 0 (U x50 x, )0 (x, 00 =50 x,)

k=442 X 3=10
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Theorem VC is NP-complete

There is an assignment that makes F()=1
[] G has a vertex cover of size k

1. put | % =1 into S for each x..
x; if x=0

2. Since each clause C=(/;,,1;,,I;3) is satisfied, at least one literal,

say /., the edge (/.,x,;) is covered by the variable x;,. Therefore,
put the remaining literals (/,,/;) into S.

[]  From the _ S is a vertex cover of size k.

Ex: Flxyx0,x3,%,) = (%0 x,0 x3) 0 (U x50 x, )0 (x, 00 =50 x,)

k=442 X 3=10
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Theorem VC is NP-complete

If G has a vertex cover of size k, there is an assignment that makes F()=1

1. From _ a cover S contains 2m vertices

from the clauses, and n vertices from the variables.

2. Thus the cover S contains exactly one of x;* and x; and
exactly two literals of a clause C,.

3. Hence each clause C; contains exactly one literal /; which is notin S,

and hence incident edge should be covered by a variable vertex.
x=1lifx*in$S J

The following assi sfies F |
[] e Tollowing assignment satisties X,-=O if X insS

Ex: Flxyx0,x3,%,) = (%0 x,0 x3) 0 (U x50 x, )0 (x, 00 =50 x,)

k=442 X 3=10

Q.E.D.
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Theorem VC is NP-complete... Addition

What happen if the formula is not satisfiable?

F(x1,%5,X%3) = (x.0 x, 0 x )T (7 O =600 —0) 0 (x,0 x50 x5) 0 (7 U x,0 —xg)

G

8\

&)

If Fis unsatisfiable, it contains at least one clause s. t. each literal
is not covered by a vertex. So, Vertex Cover should contain three
literals in the clause. Hence any vertex cover has size at least k+1.
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6. Analysis on Polynomial-Time Computability

6.2. Completeness

Theorem

Replace the set of “arcs to v”
and the set of “arcs from v”
by a right ‘gadget’.

A Hamiltonian cycle through v
on the original graph
corresponds to the
Hamiltonian cycle through v
on the resultant graph.

degree: the number of
edges incident to a vertex

N\

DHAM is NP-complete even if maximum degree=5.

[Proof]

Since DHAM [ NP,PDHAMD s LI NP.
We show DHAM <, DHAM ..
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6.2. Completeness

Theorem DHAM is NP-complete even if max. degree=5.

Points:

e Up to down via cycle |

e Each vertex has deg[1 5 Hﬂﬂ | height: O(log d})
4 212 number: O(d))

[Proof (sketch)] i

For each vertex v of degreell 6, replace the edges around v by
the gadget.

1. If the original graph G has n vertices with m edges, the resultant graph
G’ contains O(n+m) vertices with O(m) edges. Hence the reduction can
be done in polynomial time of n & m.

2. Each vertex in G” has degree at most 5.

3. G has a Hamiltonian cycle = G” has a Hamiltonian cycle. QED



Addition (BFEI7) Many natural hard problems are either

* Poly-time solvable, or
* R. Uehara, S. Iwata: e« NP-hard

Generalized Hi-Q is NP-comple
The Transactions of the IEICE, E73, p.270-273, 1990.
* P. Zhang, H. Sheng, R. Uehara:
A Double Classification Tree Search Algorithm for
Index SNP Selection, BMC Bioinformatics, 5:89, 2004.
* R. Uehara, S. Teramoto:
Computational Complexity of a|Pop-up Book
4t International Conference on Origami in Science, Mathematics, and
Education, 2006.
*E. Demaine, M. Demaine, R. Uehara, T. |UNOl Y.[UNQ:
UNQ|is hard, even for a single player,
Theoretical Computer Science, Vol. 521, pp.51-61, 2014.

*E. D. Demaine, Y. Okamoto, R. Uehara, and Y. Uno:
Computational complexity and an integer programming model of Shakashaka,
IEICE Trans. Vol. E97-A, No. 6, pp. 1213-1219, 2014.
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