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« 1—9V)yREERE: dist(py,p2) = v/ (x1 — x2)%+ (V1 — ¥2)?
© YINYEUERRE: dist(py,p2) = |x1 — x2] + |y1 — ¥l
+ L, B8R dist(py,pz) = V(x — x2)P+ (1 — y2)P
* Lo BREE: dist(py,p;) = max{|x; — x2],|y1 — y21}




Introduction to Computational Geometry (1)

Representation of points:
* We use the standard coordinate system
* In 2D, we represent as p(x,y)

Representative “Distances” between two points;
* Euclidean distance: dist(p;,p,) = \/(xl — X2)%+(y1 — V2)?
* Manhattan distance: dist(py,p,) = |x1 — x| + |y1 — V>
* L, distance: dist(p1,p;) = 2i/(xl — x,)P+(y; — y,)P
* Lo distance: dist(py,p,) = max{|x; — x,|, |y — V> 1}
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Introduction to Computational Geometry (2)

Representations of lines:
1. Representation by slope and y-intercept: y = ax + b
* The lines in parallel to y-axis (in the form of x = ¢) cannot be represented...
2. Representation by three parameters: ax + by +c¢c =0
* For agiven line, its representation is not determined uniquely...
3. Representation by two points:
* For two points (p,q), (r,s); (s —q)x — (r —p)y = ps — qr
In the third representation, the intersect of two lines is;

For two lines There intersection (x,y) is
Li(y,=y)x=(x—=x)y=xy, %)Y X (X —x)—n(x, —X;) v Sy =y —n(y,—y)
Ly, = y)x— (X, — X))y = Xy, — X, )5 A - A
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Introduction to Computational Geometry (3)

Representations of a line with parameter
Line segment joining two points (x1,y1), (x,¥,):u € [0,1]
x = (1= p@xq+ux;
Surface area of a triangle y = (1= p)y;+uy,

Area= %((Xg =X )(¥3 = ¥)— (5 —x)(y, — »))

Py .
7~ N Area>0: Counterclockwise
C Area<0: Clockwise
P"‘---- Area=0: three points on a line
1 <. XP,
Signed area of a triangle
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Introduction to Computational Geometry (4)

Relationship between a directed line and a point
* point p is on the left side of directed line AB; Area(A,B,p)>0
e point p is on the right side of directed line AB; Area(A,B,p)<0
* point p is on directed line AB; Area(A,B,p)=0

Decision if two lines intersect or not
1. Compute equations of two lines, compute their intersection, P,
and check if the point is on both lines.
The computation of “intersection” requires division, so it is not robust.
2. By using signed area;
A(Py, P,, P3) X A(P;, Py, P,) < 0 and A(Ps, Py, Py) X A(P3, Py, P;) < 0
The computation is simple and robust



