Introduction to
Algorithms and Data Structures

Lesson 2: Foundation of Algorithms (2)
Simple Basic Algorithms

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara



Algorithm?

* Algorithm: abstract description of how to solve a

e _—
£ i L]
. |
:' = N
i e - | |
T 0
P e e )
. " |
s (|l
‘1| - : i L 1- r
£l ] 1
- P, =) LT 4k -
a y pa e
5 1
‘*}-‘j §ﬂ|| - J

é\iﬁ"“ MUXaMMED
QA 5 anb Xopeaml

problem (by computer)
— |t returns correct answer for any input
— It halts for any input
— Description is not ambiguity
* (operations are well defined)

* Program: description of algorithm by some
computer language

— (Sometimes it never halt)

A-Khwarizmi

2



Design of Good Algorithm

There are some design method

Estimate time complexity (running time) and
space complexity (quantity of memory)

Verification and Proof of Correctness of
Algorithm

Bad algorithm
— Instant idea: No design method

— Just made it: No analysis of correctness and/or
complexity



Simple example and algorithm

* Stock trading algorithm
Goal: Maximize your benefit
— Naive method
— Some improvements
— More improvement: from O(n?) to O(n)



Stok trading (maximize benefit)

* You would buy once and sell once. Can you

find the maximum benefit?

2017.01 137
2017.02 150
2017.03 124
2017.04 118
2017.05 145
2017.06 132
2017.07 119
2017.08 105
2017.09 139
2017.10 138
2017.11 129
2017.12 100

You cannot sell
before buy!!




Formalization of the problem

* int sp[n]: array of stock prices (e.g. n=12)
* When you buy at month i and sell at month |
— buy: spli]
— sell: sp[j]
— benefit: splj] - spli]
e Goal: maximize splj]-spli]
That is, compute the following;
max{splj] - sp[i] | O<=i<j< n}



Outline of algorithms

e Method A

for 1i=0 to n-2
for j=i+1 to n-1
find benefit sp[j]-sp[i]

e Method B:

for j=1 to n-1
for i=0 to j-1
find benefit sp[j]-sp[i]



Algorithm based on method A

* |s the following algorithm efficient?

MaxBenefit(sp[],n){/*sp[@]..sp[n-1]*/
mxp=0; /*Maximum benefit*/
for 1=0 to n-2
for j=i+l1 to n-1
d = sp[j] - sp[i]; /*benefit*/
if d > mxp then mxp = d;
/*Update max. benefit*/
endfor
endfor
return mxp;

¥



Algorithm based on method A

* |s the following algorithm efficient?

MaxBenefit(sp[],n){/*sp[@]..sp[n-1]*/
mxp=0; /*Maximum benefit*/
for 1=0 to n-2
for j=i+l1 to n-1
d = sp[j] - sp[i]; /*benefit*/
if d > mxp then mxp = d;
/*Update max. benefit*/
endfor
endfor
return mxp;

¥

For fixed i, benefit is maximum when
sp[j] is maximum

=» We don’t need to compute
sp[j]-sp[i] everytime




Algorithm based on method A
(Improved)

MaxBenefit(sp[],n){ /*sp[@]..sp[n-1]*/
mxp=0; /* Maximum benefit */

for 1=0 to n-2

mxsp = sp[i];

if sp[j] > mxsp then mxsp = sp[j];

endfor , Subtraction is out of loop
d = mxsp - sp[i];

if d > mxp then mxp = d;
endfor
return mxp;

¥

10



Outline of algorithms

e Method A

for 1i=0 to n-2
for j=i+1 to n-1
find benefit sp[j]-sp[i]

e Method B:

for j=1 to n-1
for i=0 to j-1
find benefit sp[j]-sp[i]



Algorithm based on method B

MaxBenefit(sp[],n){ /*sp[@]..sp[n-1]*/

mxp=0; /* Maximum benefit */

for j=1 to n-1
mnsp = sp[3]; ,
for i=0 to j-1

if sp[i] < mnsp then mnsp = sp[i];

endfor
d = sp[j] - mnsp;
if d > mxp then mxp = d;

endfor

return mxp;

¥

12



Efficiency of algorithms

* Number of loops (or repeating)
— Method (A): number of loops is O(n?)

n—2 n—1 n—2 2

y y 1:Z(n—1—i):n Z_ngnz/z

i=0 j=i+1 i=0
— Method (B): number of loops is O(n?) ;/—J

nz —n Notation that
<n?/2

proportion to n?

Q. Can we decrease them?

13



More improvement of algorithms;
decreasing the number of loops

* Consider the second loop
— Method A:

e MAX[1,n-1] isthe maximum between time i and time n-1
* |t computesin order MAX[1,n-1], MAX[2,n-1],...
Q: can we compute MAX[i,n-1] from MAX[i-1,n-1]"?

NO!
— Method B:

* MIN[O,J-1] isthe minimum between time 0 to time j-1
* |t computesin order MIN[O9,0], MIN[O,1], ...
Q: can we compute MIN[ 9, j ] from MIN[O,]j-1]?

YES! MIN[e,j] = min(MIN[@,]-1],sp[]])




Algorithm based on method B

* When j=k:

MaxBenefit(sp[],n){ /*sp[@]. E?Zﬂ)mthegyinnuﬂll]
mxp=0; /* Maximum benefit SLidEEl 2] v slp

for j=1 to n-1 ) \Nheﬁj=kﬁt. |
mnsp = sp[j]; mnsp is the minimum
for i=0 to j-1 between sp[0] to sp[k]

if sp[i] < mnsp then mnsp = sp[i];

endfor
d = sp[j] - mnsp; v
if d > mxp then mxp = d;

ig:ji; mxp : We can keep msf, the minimum

} = when j=k, and use it; when j=k+1, the

minimum is the smaller one of msf
and sp[k].




Efficient algorithm

e Algorithm that runs in O(n) time

MaxBenefit(sp[],n){ /*sp[@]..sp[n-1]*/

mxp=0; /* Maximum benefit */
msf = sp[@]; /* Cheapest value so far */
for j=1 to n-1

d = sp[j] - msf;

if d > mxp then mxp = d;

if sp[j] < msf then msf = sp[j];
endfor
return mxp;

¥

16



