
Introduction to
Algorithms and Data Structures

Lesson 3: Searching (1)
Sequential search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

How to tackle the problem
• Consider data structure and how to store data

– Data are in an array in any ordering
– Data are in an array in increasing order

• Search algorithm: The way of searching
– Sequential search
– m-block method
– Double m-block method
– Binary search

• Analysis of efficiency
– Big-O notation

2

Search Problem

• Problem: S is a given set of data. For any given
data x, determine efficiently if S contains x or
not.

• Efficiency: Estimate the time complexity by n =
|S|, the size of the set S
– In this problem, “checking every data in S” is

enough, and this gives us an upper bound O(n) in
the worst case.

3

Roughly, “the running time is
proportional to n.”

Data structure 1
Data are stored in arbitrary ordering

• Each element in the set S is stored in an array
s from s[0] to s[n-1] in any arbitrary ordering.

4

37 12 25 9 87 33 65 3 29s[]=

Sequential search

• Input: any natural number x
• Output:

– If there is i such that s[i] == x, output i
– Otherwise, output -1 (for simplicity)

5

In the worst case, we need n comparisons.
Thus, the running time is proportional to n.
→ O(n) time algorithm

for (i=0; i<n; ++i)
if(x==s[i]) return i;

return -1;

Precise time complexity of
sequential search

• At most 3n + 2 steps

6

for (i=0; i<n; ++i)
if(x==s[i]) return i;

return -1;

Initialization of i takes 1 operation

For the number of loops ≦ n,
comparison ×2 (==, <)
increment ×1 （++）

Return takes 1 operation

Before searching, push x itself at the end of the array;
Then you definitely have x==s[i] for some 0<=i<=n
So you do not need the check i<n any more.

array s[] =
0 1 2 n x

“Sentinel”

searching

Programming tips 1:
simplify by using “sentinel”

s[n] = x;
i = 0;
while(x != s[i])
i = i+1;

if(i < n) return i;
else return -1;

Put the sentinel

Simple loop!
 2 operations

At most 2n+4 operations
= 7

Analysis of the number of comparisons

• The best case: 1 time
– In the case of s[0] == x

• The worst case: n times
– x is not in s[0]…s[n-1]

• The average case:
– The expected value of # of comparisons
– The i-th element is compared with probability 1/n
– The number of comparisons when x is equal to the

i-th element is i.

8

s[n] = x;
i = 0;
while(x!=s[i])
i = i+1;

if(i < n)
return i;

else
return -1;

Flip a fair coin, and
• “H”: search from s[0] forwardly
• “T”: search from s[n-1] backwardly

Intuition:
For any (sometimes fixed or unbalanced) input,
the average case occurs on average.

The behavior depends on random numbers.
The worst case occurs with low probability.

Randomized algorithm

9

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(x!=s[i])
i = i+1;

if(i < n) return i;
else return -1;

10

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;

if(i < n) return i;
else return -1;

11

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;

if(i < n) return i;
else return -1;

12

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even
if i<n
i<n  s[i]==x

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;

if(s[i]==x) return i;
else return -1;

13

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even
if i<n
i<n  s[i]==x

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;

if(s[i]==x) return i;
else return -1;

14

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even
if i<n
i<n  s[i]==x

When x is not in
s[], it returns n
s[n]=x  s[n]=x+1

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;

if(s[i]==x) return i;
else return -1;

15

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even
if i<n
i<n  s[i]==x

When x is not in
s[], it returns n
s[n]=x  s[n]=x+1

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x+1;
i = 0;
while(s[i]<x)
i = i+1;

if(s[i]==x) return i;
else return -1;

16

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even
if i<n
i<n  s[i]==x

When x is not in
s[], it returns n
s[n]=x  s[n]=x+1

Data structure 2
Data in the array in increasing order

• s[]=
– Exit from loop when: s[i]≧x
– Check after loop: s[i]==x
– Sentinel: greater than x, e.g., x+1

3 9 12 25 29 33 37 65 87

s[n]=x+1;
i = 0;
while(s[i]<x)
i = i+1;

if(s[i]==x) return i;
else return -1;

17

Q. Improve of comparison?

A. Average is better.
But the same in

the worst case

