Introduction to
Algorithms and Data Structures

Lesson 6: Foundation of Algorithms (3)
Big-O notation

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Big-O notation

e Big-O notation (Bachmann-Landau notation)
— Big-O notation: O(f(n)) | |
— Big-Q notation: Q(f(n))
— O notation: O(f(n))

Paul Bachmann Edmund Landau
1837-1920 1877—1938

* We have three more, small-o notations, but
we don’t use in this lesson.

Asymptotical Complexity

* |tindicates the behavior of complexity when the
size n of input grows quite huge.

 We'd like to check how complexity grows
(independent to machine model and/or
programming techniques)=>»
— It is enough to consider main/major term
— Coefficients are not essential from this viewpoint

* Three types:
— Upper bound
— Lower bound
— Both of them

Big-O notation: O(f(n))
Upper bound of complexity
° O(f(n)) — {g(n) ’ dc > O) 3TLO)\V/TI 2 No, 9(“) S Cf(n)}

— There exist two positive constants € and Mo such that
g(n) < cf(n) forevery 1 > Mo
— Sometimes g(n) = O(f(n))is used as g(n) € O(f(n))
. Example of f(n): log, n, n*, 2™, ...
cf(n)
g(n)

O(logn)?

Big-Q notation: Q(f(n))
Lower bound of complexity
e Qf(n)) ={g(n) | Jc > 0,3no, Vn > no, cf(n) < g(n);

— There exist two positive constants ¢ and ngy such
that cf(n) < g(n) for every n > ny

a(n)

cf(n)

n

® notation: O(f(n))

O(f(n)) =1g(n) | dc1,c2 > 0,dng, VN > ny,
ci1f(n) < g(n) <caf(n);

— There exist three positive constantscy, ¢, g such
that c1f(n) < g(n) < caf(n) for every n > nyg

c,f(n)

Short exercise

Choose functions in O(n), O(2")
—0.1n, 5n1%00 2. qn 2n+3

Prove 23n2+n + 2018 [0 O(n?)
Disprove 23n3+n+20180] O(n?)

Prove O(log, n) = O(logyyn)

