Introduction to
Algorithms and Data Structures

Lesson 7: Data Structure (1)
Data structures for search algorithms

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Algorithm and Data structure

e Algorithm: The method of solving a problem

 Data structure:

— Format of data and intermediate results of
computation

— It contributes efficiency of algorithms

Example: Array, linked list, stack, queue, priority
queue, tree structure

We introduce some basic ones using search problem

Array: Easy to access

By random access property (in RAM model), it
takes a constant time to access any data when we
specify its index.

— cf. There are some data structures that only allow to
access from its top
=>» It takes O(i) time for access to the i-th element
e.g., linked list

* |t can be accessed in order of indices; that is, it
has sequential access property.

— cf. There are some data structures that lack of this
property
e.g., tree structure

Linked list

. . data
* |t indicates “next/backward” elements

explicitly
* Set of records data

data

—
=
-

pointer

— Data: it stores data
— Pointer: it indicates the next element

e Some variants

data

Quiz:

— One-way linked list data
What's a

— Two-ways linked list
— It can represent a tree

data

C.f.: RAM Model

Address Data

0000 0000 Elm 0101 Finite control
0000 0001 0000

0000 0010 [1111 1111
0000 0011 [1100 1100 ,
0000 0100 [1100 0011 Some registers

Program counter: PC

............... ":‘d____.--'" WOrd

1111 111 I T0000:

It consists Memory and CPU (Central Processing Unit)
— We do not mind Input/Output

It is essentially the same as your computer
CPU can access any address randomly (not sequentially) in a unit cycle

Programming language C is a system that show you this structure
implicitly (like arrays and pointers)

One-way linked list

e Sequence of records
— data: it stores data
— pointer: it indicates the next record

typedef struct{ —
int data; data
struct list_t *next; pointer

} list_t;

list t *new_r;

new r =
(list t *)
malloc(sizeof(list t));

Example: Store many data into one-
way linked list

* Base:
— Generate record r in memory
— Store x in the data area of r
— Connect r to the list

head —

New record r -

head — x | +—

e Connect to the first or last item in the list

Program that adds a new record at
the head of the one-way linked list

list t *head, *new r;

int x;

head = NULL;

while(/*there are new data*/){
new r = (list t *)

malloc(sizeof(list t));
new_r->data = Xx;
new_ r->next head; head = new_r;

New record is added to the top
=» put them in the reverse order

113

head head ,
—21] T 13 N EE R P R

Program that adds a new record at the
tail of the one-way linked list

list t *head, *new r, *tail;
int x = /*some value*/;

new r =(list t *)
malloc(sizeof(list t));

Pointer that indicates
the last record

new_r->data = Xx;

new_r->next = NULL; head = new r; tail = new_r;

while(/*there are data*/){
x=/* next data */;

o
new r =(list t *) tail is updated to
malloc(sizeof(list t));| indicate the new
new_r->data = Xx; record

tail->next = new r;
new_r->next = NULL; tail = new r;

Advantage of linked list (comparing to array):
“Insert” is easy!

Linked list Array
* No need to move data We have to move (many)

v * Local updates of Latter data have
two pointers to be moved

One-way linked list:
Insertion of data

(Insert a new item after p) FaEIE S @RS)

e Make a record r that ma%loc(,
sizeof(list t)

has x as data ¥

 Copy “p->next” of pto FEIRE L =l SR E

the pointer of r new_r->next = p->next;
p->next = new_r

 Update the pointer of p
to indicate r

he&5_+

head Lo

One-way linked list:
Deletion of data
* Remove a record that pointer p indicates

— p->data = p->next->data
— p->next = p->next->next

head P
— 7 > X > y
head D Remove

—— A

Note: Removal of x is bit tricky. When algorithm checks x,
it already forgets the address of z.

