
Introduction to
Algorithms and Data Structures

Lesson 7: Data Structure (1)
Data structures for search algorithms

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

Algorithm and Data structure

• Algorithm: The method of solving a problem
• Data structure:

– Format of data and intermediate results of
computation

– It contributes efficiency of algorithms
Example: Array, linked list, stack, queue, priority
queue, tree structure

We introduce some basic ones using search problem

Array: Easy to access
• By random access property (in RAM model), it

takes a constant time to access any data when we
specify its index.
– cf. There are some data structures that only allow to

access from its top
 It takes O(i) time for access to the i-th element
e.g., linked list

• It can be accessed in order of indices; that is, it
has sequential access property.
– cf. There are some data structures that lack of this

property
e.g., tree structure

Linked list

• It indicates “next/backward” elements
explicitly

• Set of records

– Data: it stores data
– Pointer: it indicates the next element

• Some variants
– One-way linked list
– Two-ways linked list
– It can represent a tree

data

pointer

data

pointer

data

pointer

data

pointer

data

pointer

data

pointer

data

pointer

Quiz:
What’s a

“pointer” in
RAM model?

C.f.: RAM Model

• It consists Memory and CPU (Central Processing Unit)
– We do not mind Input/Output

• It is essentially the same as your computer
• CPU can access any address randomly (not sequentially) in a unit cycle
• Programming language C is a system that show you this structure

implicitly (like arrays and pointers)
5

AddressAddress DataData
Finite control

Program counter: PC
Some registers

Finite control

Program counter: PC
Some registers

wordword

typedef struct{
int data;
struct list_t *next;

} list_t;
list_t *new_r;
new_r =
(list_t *)

malloc(sizeof(list_t));

One-way linked list

• Sequence of records
– data: it stores data
– pointer: it indicates the next record

data

pointer

Example: Store many data into one-
way linked list

• Base:
– Generate record r in memory
– Store x in the data area of r
– Connect r to the list

• Connect to the first or last item in the list

head

head

New record r

x

list_t *head, *new_r;
int x;
head = NULL;
while(/*there are new data*/){

new_r = (list_t *)
malloc(sizeof(list_t));

new_r->data = x;
new_r->next = head; head = new_r;

}

headhead

21
head

21
head

13

13 1333

New record is added to the top
put them in the reverse order

Program that adds a new record at
the head of the one-way linked list

1 2

3 4

list_t *head, *new_r, *tail;
int x = /*some value*/;
new_r =(list_t *)

malloc(sizeof(list_t));
new_r->data = x;
new_r->next = NULL; head = new_r; tail = new_r;
while(/*there are data*/){

x=/* next data */;
new_r =(list_t *)

malloc(sizeof(list_t));
new_r->data = x;
tail->next = new_r;
new_r->next = NULL; tail = new_r;

}

Program that adds a new record at the
tail of the one-way linked list

Pointer that indicates
the last record

tail is updated to
indicate the new
record

Advantage of linked list (comparing to array):
“Insert” is easy!

• No need to move data • We have to move (many)
datahead head

Local updates of
two pointers

1
2
3

1
4
2
3

Latter data have
to be moved

Insert

One-way linked list:
Insertion of data

(Insert a new item after p)
• Make a record r that

has x as data
• Copy “p->next” of p to

the pointer of r
• Update the pointer of p

to indicate r

new_r = (list_t *)
malloc(
sizeof(list_t)

);
new_r->data = x;
new_r->next = p->next;
p->next = new_r

head

head
p

p

r

y
head p

head p
y

Remove

Note: Removal of x is bit tricky. When algorithm checks x,
it already forgets the address of z.

One-way linked list:
Deletion of data

• Remove a record that pointer p indicates
– p->data = p->next->data
– p->next = p->next->next

xz

z

