Introduction to
Algorithms and Data Structures

Lecture 11: Sorting (2)
Heap sort and Merge sort

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara



HEAP SORT



Heap sort

e Data structure heap

— Insertion of data: O(log n) time

— Take the maximum element: O(log n) time
* How to sort by heap

— Step 1: Put n elements into heap

— Step 2: Repeat to take the maximum element
from heap, and copy it to the rightmost element

* Computational Complexity:
— Both of steps 1 and 2 take O(n log n) time.



Example of heap sort @Step 1
Data =65 12 46 97 56 3375 53 21

(1)add 65 (2)add 12 (3)add 46 (4)add 97

® . @
(2 iz
(12)
(5)add 56 (6)add 33

... in the same way, we can add
data to heap one by one:

:
S e
®® DEO menmsssens



Example of heap sort @Step 2

Copy to the
rightmost
element




Example of heap sort @Step 2

array =

97

65

75

53

56 | 33

46

12

21 | .

(1)delete max (97)

@
KRR B =

PDOR® HED® ®
4 4

D® @ 0@

(2) delete max (75)

© O

83

@)

@

56

33

21

12

97

659 (@) — G6) (46
GO ® @0 @

65

56

46

53

12

33

21

75

97




(Bit) improvement of heap sort

 We can make step 1 to run in ©(n) time
— Add all items into the array first
— From bottom to top, exchange the parent/child

(1) Store data (2) Exchange data in each parent/child
from bottom
1 @ N3
2 = S 2 ) 7
@) @ @) G e
2/ \5 6/ é 4 {3586 @ (33)
@ / I kj
3 9 8
@ @ Subtree @ @ Subtree

rooted at i=4 rooted at i=3



John von Neumann
19031957

MERGE SORT

L ]



Merge sort

* It repeats to merge two sorted lists into one
(sorted) list

E@E E lists of length 1
8 8 3 §

2 65][46 97]B3 56]53 75]1] lists of length 2

..

12 46 65 9733 53 56 75][21]lists of length 4

—a

12 33 46 53 56 65 75 97 21]lists of length 8

e

12 21 33 46 53 56 65 75 97 ] one sorted list

1]
Ul

[EY

* First, it repeats to divide until all lists have length 1,
and next, it merges each two of them.



Implementation of merge sort:
Typical recursive calls

The interval that will be sorted: [left, right]

Find center mid = (left + right)/2
O

left mid right

[left,right]=> [left,mid], [mid+1,right]

Perform merge sort for each of them, and
merge these sorted lists into one sorted list.



Outline of merge sort

We can merge two lists of length
pand gin O(p + q) time.




Merge sort: the merge process

To merge [left, mid] and [mid+1, right]:

O(p +q)4
time

Temporarily, it
stores items in a[] to
b[] to merge.

Write back b[] to a[]




Merge sort: Time complexity

e T(n): Time for merge sort on n data

— T(n) = 2T(n/2) + “time to merge”
=2T(n/2)+cn+d (c, d: some positive constant)

* To simplify, letting n = 2k for integer k,
T(2%) =2T(2% ") + 28+ 4d
=202T(2% )+ c2 T+ d)+c2¢ +d
— 22T(2% %) +2e2% + (1 4+ 2)d
=22(2T(2% ) 4+ 22 +d) +2c2 + (1 +2)d
= 23T(2" %) +3c2+ (14+2+4)d

=2'T2 Y +ic2k+(1+2+...2"Nd
=2*T(29) + ke2"+ (1 +2+...2)d
—bn+cnlogn+ (n—1)d € O(nlogn)



Merge sort: Space complexity

* |tis easy to implement by using two arrays
al] and b[].

— Thus space complexity is ©(n), or we need n
extra array for b[].

— |t seems to be difficult to remove this “extra”
space.
— On the other hand, we can omit “Write back b[]

to a[]” (in the 2 previous slides) when we use a[]
and b[] alternately.

oAV N

merge sort is not used so often...




Monotone sequence merge sort

* Bit improved merge sort from the practical
viewpoint.

* |t first divides input into monotone sequences
and merge them. (Original merge sort does
not check the input)

Example: For 65, 12, 46, 97, 56, 33, 75, 53, 21;
65 12|46 97]56 33]75 53 27] Divide into monotone sequences

112 46 65 97|21 33 53 56 75 Merge neighbors

12 21 33 46 53 56 65 75 97 Sorted!




Monotone sequence merge sort:
Time complexity

We can merge in O(p+g) time to merge two sequences
of length p and g

After merging, the number of sequences becomes in
half.

— When the number of monotone sequences is h,
the number of recursion is log, h times.

One recursion takes O(n) time
— O(n log h) time in total.

When data is already sorted: h =1 - O(n) time
The maximum number of monotone sequences is n/2
— O(n log n) time in total.



