
Introduction to
Algorithms and Data Structures

Lecture 13: Data Structure (4)
Data structures for graphs

and example in binary search tree
Professor Ryuhei Uehara,

School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara
1

• “Vertices” (nodes) are joined by edges (arcs)
– Directed graph: each edge has direction
– Undirected graph: each edge has no direction

Shinjuku

O-notation

UenoIkebukuro

Example:
relationship between topics

Graph

Example: railway in Tokyo

2

Tokyo

SortArray

• Graph G = (V, E)
– V: vertex set, E: edge set

• Vertices: u, v, … ∈ V
• Edges: e = {u, v} ∈ E (undirected)

a = (u, v) ∈ E (directed)
• Weighted variants;

– w(u), w(e)
– Distance, cost, time, etc.

Graph: Notation

u1u1

u2u2
u10u10

u3u3

u4u4

u9u9

u7u7
u6u6u5u5

u8u8

Tokyo

Ueno

IkebukuroShinjuku

3

Graph: basic notions/notations (1/2)

• Path: sequence of vertices joined by edges
– Simple path: it never visit the same vertex again

• Cycle, closed path: path from v to v
• Connected graph: Every pair of vertices is

joined by path

4

Graph: basic notions/notations (2/2)
• Forest: Graph with no cycle
• Tree: Connected, and no cycle

• Complete graph: Every pair of vertices is
connected by an edge
– Example: K5

5

Computational complexity of graph
problems

• The number n of vertices, the number m of edges;
– Undirected graph: m ≦ n(n-1)/2
– Directed graph: m≦ n(n-1)

• m ∈ O(n2)

• Every tree has m=n-1 edges, so m∈ O(n).

• Computational complexity of graph algorithm is
described by equations of n and m.

6

Representations of a graph in
computer

• Adjacency matrix

• Adjacency list

1

2

3

4
4

2 3

4

2

Vertex List of neighbors

1

2

3

4

7

1

2

3

4

Representation of a graph:
matrix representation (adjacency matrix)

8

• (u, v) ∈ E⇒M[u, v] = 1
• (u, v) E⇒M[u, v] = 0

It is easy to extend
edge-weighted graph.

• (u, v) ∈ E⇔ v∈ L(u)
– L(u) is the list of neighbors of u

1

2

3

4
4

2 3

4

2

Vertex List of neighbors

Representation of a graph:
list representation (adjacency list)

1

2

3

4

9

It is easy to extend
vertex-weighted graph.

• Space complexity
– Adjacency matrix: Θ(n2)
– Adjacency list: Θ(m log n)

• Time complexity of checking if (u, v) ∈ E ?
– Adjacency matrix: Θ(1)
– Adjacency list : Θ(n)

Adj. matrix v.s. Adj. list

10

Example: binary search tree
• On a binary search tree, it holds for each vertex v;

– data in v > each data in left subtree of v
– data in v < each data in right subtree of v

25

12 29

7 20 42

3 9 15

17

35

32 37
11

Search in binary search tree: case v=15

25

12 29

7 20 42

3 9 15

17

35

32 37

12

Search in binary search tree: case v=34

25

12 29

7 20 42

3 9 15

17

35

32 37

13

• Perform binary search from the root
• If it reach to the leaf, store data on it

insert(x,tree){
v  root(tree)；
while(v is not a leaf){

if(x <= data(v)) then
ｖ  left child of v;

else
ｖ  right child of v;

}
make a node v at the leaf;
data(v)  x;

}

Add a data to binary search tree

14

Add a data to binary search tree
Example: add x=34

25

12 29

7 20 42

3 9 15

17

35

32 37

15

Add a data to binary search tree
Example: add x=34

25

12 29

7 20 42

3 9 15

17

35

32 37

34

16

void insert(tree *p, int x){
if(p == NULL){

p = (tree*) malloc(sizeof(tree));
p->key = x;
p->lchild =NULL; p->rchild = NULL;

}else
if(p->key < x)

insert(p->rchild, x);
else

insert(p->lchild, x);
}

Add a data to binary search tree (cnt’d)

How to call: insert(root,x)
17

Remove a data to binary search tree :
find a vertex of data x, and remove it!
• Case analysis based on the vertex v that has

data x
– Case 0. v has two leaves;

• This is easy; just remove v!
– Case 1. v has one leaf

– Case 2. v has no leaves

x

A

B

18

Remove a data to binary search tree:
Case 1. v has one leaf

(1a) v is left child of parent p: update the left
child of p by the nonempty child of v

x

A

B

A
B

19

Remove a data to binary search tree:
Case 1. v has one leaf

(1b) v is right child of parent p: update the right
child of p by the nonempty child of v

x

A
B

A
B

20

Remove a data to binary search tree :
Case 2. v has no leaves

• Let u be the left child
of v.

• Find the vertex w that
has the maximum
value w in the subtree
rooted at u.
– Right child of w should

be a leaf
• Value y in w is copied

to v, and remove w.
– As same as case 1

x

A

y

y

A
21

Remove a data to binary search tree :
Remove x=25

25

12 29

7 20 42

3 9 15

17

35

32 37

22

Remove a data to binary search tree :
Remove x=25

20

12 29

7 20 42

3 9 15

17

35

32 37

23

Some comments
• The shape of binary search tree depends on

– Initial sequence of data
– Ordering of adding/removing data

• So, it may be a quite unbalanced tree if these
ordering is not good…
– If you can hope that it is “random”, the expected level

of tree is O(log n).
– If you may have quite unbalanced data, the level can

be Θ(n). (In this case, it is almost the same as a linked
list.)

