Introduction to
Algorithms and Data Structures

Lecture 13: Data Structure (4)
Data structures for graphs
and example in binary search tree

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Graph

e “Vertices” (nodes) are joined by edges (arcs)

— Directed graph: each edge has direction
— Undirected graph: each edge has no direction

Example: railway in Tokyo Example:
relationship between topics
lkebukuro
Ueno
Array >ort
Shinjuku o
Tokyo
y O\$

O-notation

Graph: Notation

Graph G = (V, E)
— V: vertex set, E: edge set

Vertices: u, v, ... 1l V

Edges: e ={u, v} LU E (undirected)

a=(u,v) U E (directed)

Weighted variants;

e

— w(u), w(e) Shinjuku /

\ /

— Distance, cost, time, etc.

~~

lkebukuro

-

Graph: basic notions/notations (1/2)

* Path: sequence of vertices joined by edges
— Simple path: it never visit the same vertex again

Moo o0 O

* Cycle, closed path: path fromvtov

 Connected graph: Every pair of vertices is
joined by path

O—0

O

Graph: basic notions/notations (2/2)

* Forest: Graph with no cycle
* Tree: Connected, and no cycle

ANV

 Complete graph: Every pair of vertices is

connected by an edge
— Example: K @

Computational complexity of graph
problems

* The number n of vertices, the number m of edges;
— Undirected graph: m 0 n(n-1)/2
— Directed graph: m 1 n(n-1)
*m [0 O(n?)

* Every tree has m=n-1 edges, so mL1l O(n).

 Computational complexity of graph algorithm is
described by equations of n and m.

Representations of a graph in

computer
* Adjacency matrix /O 1 7 O\
0 0 0 1
M = 0O 1 0 1
0O 0 0 O
* Adjacency list \ /
| T > 3 / 1 4
2 T A 2%0
3 N
\

Vertex List of neighbors

Representation of a graph:
matrix representation (adjacency matrix)

e (u,v) EL M[u,v]=1
N (U, V) ¢ E[] I\/I[u, V] =0 edge-weighted graph.
|
0
4 _
2 éﬁyo M=o
\O

3

_—

O —= = O

C o o =

O — o -

N—

Representation of a graph:
list representation (adjacency list)

e (u,v)U E = vlU L(u)
— L(u) is the list of neighbors of u

1 ‘\bz » 3
2 \\
4
3 \\
J 4
. 2

\/ U C - U

o Vert List of neighb
vertex-weighted graph. Mt 151 OF IEIEHDOTS

Adj. matrix v.s. Adj. list

e Space complexity
— Adjacency matrix: ©(n?)
— Adjacency list: ©(m log n)
* Time complexity of checking if (u,v) LU E?
— Adjacency matrix: ©(1)
— Adjacency list : O(n)

Q. How about update graph?
(e.g., add/remove vertex/edge)

Example: binary search tree

* On a binary search tree, it holds for each vertex v;

— data in v > each data in left subtree of v

— data in v < each data in right subtree of v

Search in binary search tree: case v=15

Search in binary search tree: case v=34

Add a data to binary search tree
Perform binary search from the root
f it reach to the leaf, store data on it

insert(x,tree){
v €& root(tree);
while(v is not a leaf){
if(x <= data(v)) then
v & left child of v;
else
v € right child of v;
}

make a node v at the leaf;
data(v) € x;

Add a data to binary search tree
Example: add x=34

)

Add a data to binary search tree
Example: add x=34

25

12 29
7 20 42
7\ N A

3 9 15
/2N WY A W A N

Add a data to binary search tree (cnt’d)

void insert(tree *p, int x){
if(p == NULL){
p = (tree*) malloc(sizeof(tree));
p->key = x;
p->1lchild =NULL; p->rchild = NULL;
telse
if(p->key < x)
insert(p->rchild, x);
else
insert(p->lchild, x);
}

How to call: insert(root,x)

Remove a data to binary search tree :
find a vertex of data x, and remove it!

e Case analysis based on the vertex v that has

data x p,
— Case 0. v has two leaves; y \
* This is easy; just remove v! X
— Case 1. v has one leaf AN
B

— Case 2. v has no leaves

Remove a data to binary search tree:
Case 1. v has one leaf

(1a) v is left child of parent p: update the left

child of p by the nonempty child of v
p o

v\
~ _ N

A A

Q. Is property of binary search tree OK? .

Remove a data to binary search tree:
Case 1. v has one leaf

(1b) v is right child of parent p: update the right
child of p by the nonempty child of v

p, p—

Remove a data to binary search tree :
Case 2. v has no leaves

 Let u be the left child

of v. ./ 4

* Find the vertex w that X
has the maximum ad T .
value w in the subtree /™ /\\ /5 /\
rooted at u.
— Right child of w should
bega leaf \@%N / w\ y / \
* Valueyin w is copied / \

to v, and remove w.
— As same as case 1

Q. Is this still binary searchAree?

Remove a data to binary search tree :
Remove x=25

22

Remove a data to binary search tree :
Remove x=25

12 29
— N
7 20 42
7N\ \ NN
3 9 15
/2N WY A W A /N

17 32 37

[) |\

Some comments

 The shape of binary search tree depends on
— Initial sequence of data
— Ordering of adding/removing data

* So, it may be a quite unbalanced tree if these
ordering is not good...
— If you can hope that it is “random”, the expected level
of tree is O(log n).

— If you may have quite unbalanced data, the level can
be ©(n). (In this case, it is almost the same as a linked
list.)

