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• “Vertices” (nodes) are joined by edges (arcs)
– Directed graph: each edge has direction
– Undirected graph: each edge has no direction
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• Graph G = (V, E)
– V: vertex set, E: edge set

• Vertices: u, v, … ∈ V
• Edges:  e = {u, v} ∈ E (undirected)

a = (u, v) ∈ E (directed)
• Weighted variants;

– w(u), w(e)
– Distance, cost, time, etc.

Graph: Notation
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Graph: basic notions/notations (1/2)

• Path: sequence of vertices joined by edges
– Simple path: it never visit the same vertex again

• Cycle, closed path: path from v to v
• Connected graph: Every pair of vertices is 

joined by path
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Graph: basic notions/notations (2/2)
• Forest: Graph with no cycle
• Tree: Connected, and no cycle

• Complete graph: Every pair of vertices is 
connected by an edge
– Example: K5
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Computational complexity of graph 
problems

• The number n of vertices, the number m of edges;
– Undirected graph: m ≦ n(n-1)/2
– Directed graph: m≦ n(n-1)

• m ∈ O(n2)

• Every tree has m=n-1 edges, so m∈ O(n).

• Computational complexity of graph algorithm is 
described by equations of n and m.
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Representations of a graph in 
computer

• Adjacency matrix

• Adjacency list
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Representation of a graph:
matrix representation (adjacency matrix)
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• (u, v) ∈ E⇒M[u, v] = 1
• (u, v) E⇒M[u, v] = 0

It is easy to extend 
edge-weighted graph.



• (u, v) ∈ E⇔ v∈ L(u)
– L(u) is the list of neighbors of u
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It is easy to extend 
vertex-weighted graph.



• Space complexity
– Adjacency matrix: Θ(n2)
– Adjacency list: Θ(m log n)

• Time complexity of checking if  (u, v) ∈ E ?
– Adjacency matrix: Θ(1)
– Adjacency list : Θ(n)

Adj. matrix v.s. Adj. list
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Example: binary search tree
• On a binary search tree, it holds for each vertex v;

– data in v > each data in left subtree of v
– data in v < each data in right subtree of v

25

12 29

7 20 42

3 9 15

17

35

32 37
11



Search in binary search tree: case v=15
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Search in binary search tree: case v=34
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• Perform binary search from the root
• If it reach to the leaf, store data on it

insert(x,tree){
v  root(tree)；
while(v is not a leaf){

if( x <= data(v) ) then 
ｖ  left child of v;

else                    
ｖ  right child of v;

}
make a node v at the leaf;
data(v)  x;

}

Add a data to binary search tree
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Add a data to binary search tree
Example: add x=34
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Add a data to binary search tree
Example: add x=34
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void insert(tree *p, int x){  
if(p == NULL){

p = (tree*) malloc( sizeof(tree) );
p->key = x;
p->lchild =NULL; p->rchild = NULL;

}else 
if( p->key < x )

insert( p->rchild, x);
else

insert( p->lchild, x);
}

Add a data to binary search tree (cnt’d)

How to call: insert(root,x)
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Remove a data to binary search tree :
find a vertex of data x, and remove it! 
• Case analysis based on the vertex v that has 

data x
– Case 0. v has two leaves; 

• This is easy; just remove v!
– Case 1. v has one leaf

– Case 2. v has no leaves
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Remove a data to binary search tree:
Case 1. v has one leaf

(1a) v is left child of parent p: update the left  
child of p by the nonempty child of v
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Remove a data to binary search tree:
Case 1. v has one leaf

(1b) v is right child of parent p: update the right
child of p by the nonempty child of v
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Remove a data to binary search tree :
Case 2. v has no leaves

• Let u be the left child 
of v.

• Find the vertex w that 
has the maximum 
value w in the subtree 
rooted at u.
– Right child of w should

be a leaf
• Value y in w is copied 

to v, and remove w.
– As same as case 1
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Remove a data to binary search tree :
Remove x=25
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Remove a data to binary search tree :
Remove x=25
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Some comments
• The shape of binary search tree depends on

– Initial sequence of data
– Ordering of adding/removing data

• So, it may be a quite unbalanced tree if these 
ordering is not good…
– If you can hope that it is “random”, the expected level 

of tree is O(log n).
– If you may have quite unbalanced data, the level can 

be Θ(n). (In this case, it is almost the same as a linked 
list.) 


