Introduction to
Algorithms and Data Structures

Lecture 14: Graph Algorithms (1)
Breadth-first search and Depth-first search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Search in Graph

* How can we check all vertices in a graph
systematically, °

and solve some problem? G/ \e
— e.g., Do you have a path from Ato D? "9~_
 Two major (efficient) algorithms: Q

— Breadth First Search: A->B->C->D
it starts from a vertex v, and visit all (reachable)
vertices from the vertices closer to v.

— Depth First Search:A->B->D ->C
it starts from a vertex v, and visit every reachable
vertex from the current vertex, and back to the last
vertex which has unvisited neighbor.

BFS (Breadth-First Search)

* For a graph G=(V,E) and any start point sLI V, all
reachable vertices from s will be visited from s in
order of distance from s.

e QOutline of method: color all vertices by white,
gray, or black as follows;
— White: Unvisited vertex
— Gray: It is visited, but it has unvisited neighbors

— Black: It is already visited, and all neighbors are also
visited

— Search is completed when all vertices got black
— Color of each vertex is changed as white—>gray—>black

BFS (Breadth-First Search):

Program code
BFS(V,E,s){

for veV do toWhite(v); endfor

toGray(s); Queue is the best data
Q={s}; structure for this purpose!

while(Q!={}){

u=pop(Q); // Q = Q’ where Q={u}uQ’
for ve{veVv|(v,u)€EE}

if isWhite(v) then

toGray(v); push(Q,v);

endif
endfor
toBlack(u);

}

¥

BFS (Breadth-First Search): Example

3

Q=i1}

u=1,
visit 2
Q=12}
black 1

u=2,
visit 3,4,5

Q={3.4,5}
black 2

u=3,
visit null

Q=14.5}
black 3

u=4,
visit null

Q={5}
black 4

u=yJ,
visit 6
Q=16}
black 5

u==o,
visit null
Q={}
black 6

BFS:

BFS(V,E,s){

Time complexity for vev do

Consider from towhite(v);
endfor

toGray(s);

the viewpoints of vertices
and edges

. Q=1s};
* Each vertex never gets white while(Q!={}){
again after initialization. u=pop(Q) ;
* Each vertex gets into Q and for ve{v,EVI (V,u)€EE}
gets out from Q at most once if isWhitE(\;) then
* Each edge is checked at most toGray(v);
once ?
— when one endpoint vertex is pl.JSh (Q,v);
taken from Q and its neighbors endif
are checked along edges endfor

« ~O(V|+I|E)) }}toBlack(u);

Application of BFS:
Shortest path problem on graph

Definition of “distance”
— Start vertex v has distance 0

— Except start vertex, each vertex u has distance d+1,
where d is the distance of parent of u.

* On BFS, modify that each gray vertex receives
its “distance” from black neighbor, then you
get (shortest) distance from v to it.

DFS (Depth-First Search)

* For a graph G=(V,E) and start point s€V, it
follows reachable vertices from s until it
reaches a vertex that has no unvisited
neighbor, and returns to the last vertex that
has unvisited neighbors.

de(.Vf E, s) { <J Program code is
visit(s) relatively simple, and
for (s, w)U E do vertices are put into a

if notVisited(w) then
dfs(V, E, w)

stack when dfs makes a
recursive call.

DFS: Example

DFS(1)
4 5 6
1 . 2 ; DFS(6)
e i DFS(2)
4 5 6 DFS(5)
DFS(3)
I 2 3 DFS(2)
DFS(3)
4 > 6 DFS(4)
1 2 3
DFS(5)
4 5 6 DFS(2)

Application of DFS:
Find connected components in a graph

* For a given (disconnected) graph G = (V, E),
divide it into connected graphs G, = (V,, E,), ...,
G.=(V, E).

— We will give a numbering array cn[] such that
Juvh Vv, vl v, U vl V. L1 i# U cenlu] # cn|v]

a M A
Gl/ Q\ G
.. ©

S o Y

Application of DFS:

Find connected components of a graph

cc(V,E,en){ //en[|V]]
for veV do
cn[v] = 0; /*initialize*/
endfor
k = 1;

for V€V do dfs(V,E,v,k,cn){
if cn[v]==0 then cnlv]=k;

dfs(V,E,v,k,cn); for ue{u|(v,u)€E} do
k=k+1; if cn[u]==0 then
endif dfs(V,E,u,k,cn);
endfor endif

} endfor
}

BFS v.s. DFS on a graph

* Two major (efficient) algorithms:
— Breadth First Search:
It corresponds to “Queue”
— Depth First Search:
It corresponds to “Stack”

— Both algorithms are easy to implement to run in
O(|V|+]|E]) time. (In a sense, this time complexity
is optimal since you have to check all input data.)

— Depending on applications, we choose better
algorithm.

