
Introduction to
Algorithms and Data Structures

Lecture 14: Graph Algorithms (1)
Breadth-first search and Depth-first search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

Search in Graph
• How can we check all vertices in a graph

systematically,
and solve some problem?
– e.g., Do you have a path from A to D?

• Two major (efficient) algorithms:
– Breadth First Search: A -> B -> C -> D

it starts from a vertex v, and visit all (reachable)
vertices from the vertices closer to v.

– Depth First Search: A -> B -> D -> C
it starts from a vertex v, and visit every reachable
vertex from the current vertex, and back to the last
vertex which has unvisited neighbor.

A

B C

D

2

BFS (Breadth-First Search)
• For a graph G=(V,E) and any start point s∈V, all

reachable vertices from s will be visited from s in
order of distance from s.

• Outline of method: color all vertices by white,
gray, or black as follows;
– White: Unvisited vertex
– Gray: It is visited, but it has unvisited neighbors
– Black: It is already visited, and all neighbors are also

visited

– Search is completed when all vertices got black
– Color of each vertex is changed as whitegrayblack

3

BFS(V,E,s){
for v∈V do toWhite(v); endfor
toGray(s);
Q={s};
while(Q!={}){

u=pop(Q); // Q  Q’ where Q={u}∪Q’
for v∈{v∈V|(v,u)∈E}

if isWhite(v) then
toGray(v); push(Q,v);

endif
endfor
toBlack(u);

}
}

BFS (Breadth-First Search):
Program code

4

Queue is the best data
structure for this purpose!

21 3

4 5 6
Q={1}

1 2 3

4 5 6

u=1,
visit 2
Q={2}
black 1

1 2 3

4 5 6

u=2,
visit 3,4,5
Q={3,4,5}
black 2

1 2 3

4 5 6

u=3,
visit null
Q={4,5}
black 3

1 2 3

4 5 6

u=4,
visit null
Q={5}
black 4

1 2 3

4 5 6

u=5,
visit 6
Q={6}
black 5

1 2 3

4 5 6

u=6,
visit null
Q={}
black 6

BFS (Breadth-First Search): Example

5

Time complexity is not easy from program…BFS:
Time complexity

Consider from
the viewpoints of vertices
and edges
• Each vertex never gets white

again after initialization.
• Each vertex gets into Q and

gets out from Q at most once
• Each edge is checked at most

once
– when one endpoint vertex is

taken from Q and its neighbors
are checked along edges

•

BFS(V,E,s){
for v∈V do

toWhite(v);
endfor
toGray(s);
Q={s};
while(Q!={}){

u=pop(Q);
for v∈{v∈V|(v,u)∈E}

if isWhite(v) then
toGray(v);
push(Q,v);

endif
endfor
toBlack(u);

}}
6

Application of BFS:
Shortest path problem on graph

7

Definition of “distance”
– Start vertex v has distance 0
– Except start vertex, each vertex u has distance d+1,

where d is the distance of parent of u.
• On BFS, modify that each gray vertex receives

its “distance” from black neighbor, then you
get (shortest) distance from v to it.

DFS (Depth-First Search)
• For a graph G=(V,E) and start point s V, it

follows reachable vertices from s until it
reaches a vertex that has no unvisited
neighbor, and returns to the last vertex that
has unvisited neighbors.

8

dfs(V, E, s) {
visit(s)
for (s, w)∈E do

if notVisited(w) then
dfs(V, E, w)

}

Program code is
relatively simple, and
vertices are put into a

stack when dfs makes a
recursive call.

DFS: Example
21 3

4 5 6
DFS(1)

21 3

4 5 6
DFS(2)

21 3

4 5 6
DFS(3)

21 3

4 5 6
DFS(5)

21 3

4 5 6
DFS(6)

21 3

4 5 6
DFS(6)

21 3

4 5 6

DFS(5)
DFS(3)
DFS(2)

21 3

4 5 6

DFS(4)

21 3

4 5 6

DFS(2)

9

• For a given (disconnected) graph G = (V, E),
divide it into connected graphs G1 = (V1, E1), …,
Gc = (Vc, Ec).
– We will give a numbering array cn[] such that
∀u,v∈V, u∈Vi∧ v∈Vj∧ i≠j ⇒ cn[u] ≠ cn[v]

Application of DFS:
Find connected components in a graph

1

1 1

1

2

2

2
10

G1 G2 G

cc(V,E,cn){ //cn[|V|]
for v∈V do

cn[v] = 0; /*initialize*/
endfor
k = 1;
for v∈V do

if cn[v]==0 then
dfs(V,E,v,k,cn);
k=k+1;

endif
endfor

}

dfs(V,E,v,k,cn){
cn[v]=k;
for u∈{u|(v,u)∈E} do

if cn[u]==0 then
dfs(V,E,u,k,cn);

endif
endfor

}

Application of DFS:
Find connected components of a graph

11

BFS v.s. DFS on a graph
• Two major (efficient) algorithms:

– Breadth First Search:
It corresponds to “Queue”

– Depth First Search:
It corresponds to “Stack”

– Both algorithms are easy to implement to run in
O(|V|+|E|) time. (In a sense, this time complexity
is optimal since you have to check all input data.)

– Depending on applications, we choose better
algorithm.

12

