Introduction to Algorithms and Data Structures

Lecture 15: Data Structure (5)

Dynamic Search Tree and its balancing

Professor Ryuhei Uehara,

School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Dynamic search and data structure

- Sometimes, we would like to search in dynamic data, i.e., we add/remove data in the data set.
- Example: Document management in university
 - New students: add to list
 - Alumni: remove from list
 - When you get credit: search the list

Q. Good data structure?

Naïve idea: array or linked list?

- Data in order:
 - Search: binary search in O(log n) time
 - Add and remove: O(n) time per data
- Data not in order:
 - Search and remove: O(n) time per data
 - Add: in O(1) time

Imagine: you have 10000 students, and you have 300 new students!

Better idea: binary search tree

- For every vertex v, we have the following;
 - Data in v > any data in a vertex in left subtree
 - Data in v < any data in a vertex in right subtree

Better idea: binary search tree

- When data is random:
 - Depth of the tree: O(log n)
 - Search, add, remove: O(log n) time.
- In the worst case:
 - Depth of the tree: n
 - When data is given in order,
 we have the worst case.
 - Search, add, remove: O(n) time...

Nice idea: (Self-)Balanced Binary Search Tree

- There are some algorithms that maintain to take balance of tree in depth $O(\log n)$.
 - e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)

Georgy M. Adelson-Velsky (1922–2014)

Evgenii M. Landis (1921–1997)

AVL tree [G.M. Adelson-Velskii and E.M. Landis '62]

 Property (or assertion): at each vertex, the depth of left subtree and right subtree differs at most 1.

AVL tree: Insertion of data

- Find a leaf v for a new data x
- Store data x into v (v is not a leaf any more)
- Check the change of balance by insertion of x
- From v to the root, check the balance at each vertex, and rebalance (rotation) if necessary.

Balance: OK

before after

Balance: OK

0;2@vertex1221

AVL tree: Rebalance by rotations

- "Rotate" tree vertices to make the difference up to 1:
 - Rotation LL
 - Rotation RR
 - Double rotation LR
 - Double rotation RL

AVL tree: Rebalance by rotation: Rotation LL

Lift up the left subtree if it becomes too deep

AVL tree: Rebalance by rotation: Rotation RR

Lift up the right subtree if it becomes too deep

AVL tree: Rebalance by rotation: Double rotation LR

• When right subtree of left subtree becomes too deep, lift up the left-right subtree.

AVL tree: Rebalance by rotation: Double rotation RL

• When left subtree of right subtree becomes too deep, lift up the right-left subtree.

• Deletion of 6

• Deletion of 8

Time complexity of balanced binary search tree

- Search: $O(\log n)$ time
- Insertion/Deletion: $O(\log n)$ time
 - $-O(\log n)$ rotations
 - Each rotation takes constant time

• In total, on a balanced binary search tree, every operation can be done in $O(\log n)$ time. (n is the number of data in the tree)