
I111E Algorithms & Data Structures
9. Sorting (2):

Merge sort, quick sort, analysis, and
counting sort

1

School of Information Science
Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

2019-11-18
All materials are available at

http://www.jaist.ac.jp/~uehara/couse/2019/i111e

C Version

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

MERGE SORT

John von Neumann
1903−1957

• It repeats to merge two sorted lists into one
(sorted) list

• First, it repeats to divide until all lists have length 1,
and next, it merges each two of them.

65 12 46 97 56 33 75 53 21 lists of length 1

12 65 46 97 33 56 53 75 21 lists of length 2

12 46 65 97 33 53 56 75 21 lists of length 4

12 33 46 53 56 65 75 97 21 lists of length 8

12 21 33 46 53 56 65 75 97 one sorted list

Merge sort

How can you do?

left mid right

Implementation of merge sort:
Typical recursive calls

• The interval that will be sorted: [left, right]
• Find center mid = (left + right)/2

• [left,right][left,mid], [mid+1,right]
• Perform merge sort for each of them, and

merge these sorted lists into one sorted list.

How to merge?

12 46 56 65 97 21 33 53 75
left=0 right=8mid=4

i=0 (left -> mid) ｊ=5 (mid+1 -> right) k=0 (left->right)

Between 2 tops of 2 sequences, move smaller one to the new array
12 46 56 65 97 21 33 53 75 12

i=1 ｊ=5 k=1

12 46 56 65 97 21 33 53 75 12 21

i=1 ｊ=6 k=2

12 46 56 65 97 21 33 53 75 12 21 33

i=1 ｊ=7 k=3 5

How to merge?

12 46 56 65 97 21 33 53 75
left=0 right=8mid=4

i=0 (left -> mid) ｊ=5 (mid+1 -> right) k=0 (left->right)

12 46 56 65 97 21 33 53 75 12 21 33 46 53 56 65

i=4 ｊ=8 k=7

12 46 56 65 97 21 33 53 75 12 21 33 46 53 56 65 75

i=4 ｊ=9 >right k=8

When one sequence is empty (i>mid or j>right), copy the others

12 46 56 65 97 21 33 53 75 12 21 33 46 53 56 65 75 97

i=5 k=9
6

Task takes right-left+1 steps

MergeSort(int left, int right){
int mid;
if(interval [left,right] is short)

(sort by any other simple sort algorithm);
else{

mid = (left+right)/2;
MergeSort(left, mid);
MergeSort(mid+1, right);
Merge [left, mid] and [mid+1, right];

}
}

Outline of merge sort

We can merge two lists of length
p and q in 𝑂𝑂 𝑝𝑝 + 𝑞𝑞 time.

Implementation of merging

i=left; j=mid+1; k=left;
while(i<=mid && j<=right)

if(a[i] <= a[j]) {
b[k]=a[i]; k++; i++:

} else {
b[k]=a[j]; k++; j++;

}
while(j<=right){ b[k]=a[j]; k++; j++; }
while(i<=mid){ b[k]=a[i]; k++; i++; }
for(i=left; i<=right; i++) a[i]=b[i];

Put the smaller one
of two tops into b[]

Write back to a[] from b[]

𝑂𝑂(𝑝𝑝 + 𝑞𝑞)

We need to merge [left, mid] and [mid+1, right] efficiently

Top of left top of right index of new array

Copy remainders of the
non-empty list to b[]

8

Merge sort: Time complexity
• T(n): Time for merge sort on n data

– T(n) = 2T(n/2) + “time to merge”
= 2T(n/2) + cn + d (c, d: some positive constant)

• To simplify, letting n = 2k for integer k,

Merge sort: Space complexity
• It is easy to implement by using two arrays

a[] and b[].
– Thus space complexity is Θ(n), or we need n

extra array for b[].
– It seems to be difficult to remove this “extra”

space.
– On the other hand, we can omit “Write back b[]

to a[]” (in the 2 previous slides) when we use a[]
and b[] alternately.

Maybe this “extra” space is the reason why
merge sort is not used so often…

65 12 46 97 56 33 75 53 21 Divide into monotone sequences

12 46 65 97 21 33 53 56 75 Merge neighbors

12 21 33 46 53 56 65 75 97 Sorted!

Monotone sequence merge sort

• Bit improved merge sort from the practical
viewpoint.

• It first divides input into monotone sequences
and merge them. (Original merge sort does
not check the input)

Example: For 65, 12, 46, 97, 56, 33, 75, 53, 21;

Monotone sequence merge sort:
Time complexity

• We can merge in O(p+q) time to merge two sequences
of length p and q

• After merging, the number of sequences becomes in
half.
– When the number of monotone sequences is h,

the number of recursion is log2 h times.
• One recursion takes O(n) time

→ O(n log h) time in total.

• When data is already sorted: h = 1 → O(n) time
• The maximum number of monotone sequences is n/2

→ O(n log n) time in total.

QUICK SORT

13

Tony Hoare
1934−

C.A.R. Hoare, “Algorithm 64: Quicksort”.
Communications of the ACM 4 (7): 321 (1961)

Quick sort

• Main property: On average, the fastest sort!
• Outline of quick sort:

– Step 1: Choose an element x (which is called pivot)
– Step 2: Move all elements ≦ x to left

Move all elements ≧ x to right

– Step 3: Sort left and right sequences independently
and recursively

• (When sequence is short enough, sort by any simple sorting)

≦x ≧x

14

Quick sort: Example
Step 1. Choose an element x

• Sort the following array by quick sort:

• Choose x=56, for example;

65 12 46 97 56 33 75 53 21

65 12 46 97 56 33 75 53 21

15

•
• Start from [l, r] = [0,n-1], move l and r,

Swap a[l] and a[r] when a[l] >= x && a[r] < x

65 12 46 97 56 33 75 53 21

≦x ≧x

21 12 46 97 56 33 75 53 65

21 12 46 53 56 33 75 97 65
16

Quick sort: Example
Step 2. Move element w.r.t x:

Quick sort: Example
Step 3. Sort left and right sequences recursively

17

21 12 46 53 33 56 75 97 65

Quick sort Quick sort

21 12 46 53 33

21 12 33 46 53

75 97 65

75 65 97

⋮ ⋮

qsort(int a[], int left, int right){
int i, j, x;
if(right <= left) return;
i = left; j = right; x = a[(i+j)/2];
while(i<=j){

while(a[i]<x) i=i+1;
while(a[j]>x) j=j-1;
if(i<=j){
swap(&a[i], &a[j]); i=i+1; j=j-1;

}
}
qsort(a, left, j); qsort(a, i, right);

}

Quick sort: Program

18

Note: In MIT textbook, there is another implementation.

Quick sort: Time complexity
Worst case

19

• When the pivot x is the maximum or minimum
element, we divide

length n → length 1 + length n-1
• This repeats until the longer one becomes 2

• The number of comparisons;

Almost as same as the bubble sort…

Analysis of QuickSort

– Sorting Problem
Input: An array a[n] of n data

Output: The array a[n] such that
a[1]<a[2]<…<a[n]

★To simplify, we assume that there are no pair i≠j with a[i]=a[j]

– In practical, QuickSort is said to be “the fastest sort”
• Representative algorithm based on divide-and-conquer
• If partition is well-done, it runs in O(n log n) time.
• If each partition is the worst case, it runs in O(n2) time.
…Can we analyze theoretically, and guarantee the running time?

Analysis of QuickSort
– Review of QuickSort

• Call qsort(a,1,n)
• If qsort(a, i, j) is called,

– (Randomly) choose a pivot a[m]
– Divide a[] into “former” and “latter” by a[m]. I.e., sort as

a[i’]<a[m] for i≦ i’ < m, and
a[j’]>a[m] for m< j’< j.

– Return qsort(a, i, i’), a[m], qsort(a, j’, j) as the result

– Though they say that QuickSort is the fastest in a practical sense,,,
• When a[m] is always the center of a[i]..a[j], we have

T(n) ≦ 2T(n/2) + (c+1) n
and hence T(n) = O(n log n).

• When a[m] is always either a[i] or a[j], we have
T(n)≦T(1)+T(n-1)+(c+1)n

and hence T(n) = O(n2). What about
average case?

[C.F.]
We can always find
the center in O(j-i)

time.

Analysis of QuickSort
– They say that QuickSort is the fastest in a practical sense,,,

• Assumption: each item in a[i] ... a[j] is chosen uniformly at random.
– Thus the kth largest value is chosen as the pivot with probability

1/(j-i+1)

– Notation
» sk is the kth largest item in a[1]…a[n].
» Define indicator variable Xij as follows

– Running time of QuickSort
~ the number of comparisons=

[Theorem] An upper bound of the expected value of the
running time of QuickSort is 2n H(n)~ 2n log n It runs fast

since few
overhead.

0
1ijX 

= 
 si and sj are compared in the algorithm

si and sj are not compared in the algorithm

1

n

ij
i j i

X
= >
∑∑

Hn is the harmonic number and Hn=O(log n) .

Analysis of QuickSort

– The expected value of the running time of QuickSort=

– Define as “pij ： probability that si and sj are compared”,

Thus consider the value of pij

– When si and sj are compared??
1. One of them is chosen as the pivot, and
2. They are not yet separated by qsort up to there

⇔ Any element between si and sj are not yet chosen as a pivot

（Linearity of expectation value）1 1
[] []

n n

ij ij
i j i i j i

E X E X
= > = >

=∑∑ ∑∑

[] 1 (1) 0ij ij ij ijE X p p p= × + − × =

[Theorem] An upper bound of the expected value of the running time
of QuickSort is 2n H(n)~ 2n log n

Analysis of QuickSort

• When si and sj are compared?
1. One of them is chosen as the pivot, and
2. They are not yet separated by qsort up to there

⇔ Any element between si and sj is not yet chosen as a pivot
– The ordering of pivots in si, si+1, si+2, …, sj-1,sj is uniformly at random!
– Thus si or sj is the first pivot with probability

Therefore, the expected time of the running time of QuickSort
=

2
1j i− +

1 1 1 1

2[] []
1

n n n n

ij ij ij
i j i i j i i j i i j i

E X E X p
j i= > = > = > = >

= = =
− +∑∑ ∑∑ ∑∑ ∑∑

1

1 2 1 1

2 12 2 ()
n n i n n

i k i k
nH n

k k

− +

= = = =

= ≤ =∑ ∑ ∑∑

[Theorem] An upper bound of the expected value of the running time
of QuickSort is 2n H(n)~ 2n log n

COMPUTATIONAL COMPLEXITY OF
THE SORTING PROBLEM

Sort on Comparison model

• Sort on comparison model: Sorting algorithms
that only use the “ordering” of data
– It only uses the property of “a > b, a = b, or a < b”;

in other words, the value of variable is not used.

• Upper bound: O(n log n)
There exist sort algorithms that run in time
proportional to n log n (e.g., merge sort, heap
sort, …).

• Lower bound: Ω(n log n)
For any comparison sort, there exists an input
such that the algorithm runs in time
proportional to n log n.
We consider the lower bound of comparison sorting.

Computational complexity of sort on
comparison model

• Simple example; sort 3 data a, b, c:
First, compare (a,b), (b,c), or (c, a). Without loss of
generality, we assume that (a,b) is compared; then
the next pair is (b,c) or (c,a):

yes a<b

nob<c

a<ca<b<c

a<c≤b c≤a<b

yes

yes

no

no

yes a<b

noa<c

b<cc≤a<b

a<b<c a<c≤b

no yes

yes no

b<c? a<c?

Computational complexity of
comparison sort: lower bound

When we build a decision tree such that “the longest path from
root to a leaf is shortest,” that length of the longest path gives
us a lower bound of sorting problem.

• What we know from sorting of {a, b, c}:
– For any input, we obtain the solution at most 3

comparison operators.
– There are some input that we have to compare at

least 3 comparison operations.
= maximum length of a path from root to a leaf is 3,

which gives us the lower bound.

Computational complexity of
comparison sort: lower bound

Computational complexity of
comparison sort: lower bound

The case when n data are sorted
– Let k be the length of the longest path in an

optimal decision tree T. Then,
The number of leaves of T ≦ 2k

– Since all possible permutations of n items should
appear as leaves，n! ≦ 2k

– By taking logarithm,

Non-comparison sort: Counting sort
• We need some assumption:

data[i]∈{1,…,k} for 1≦i≦n, k∈O(n)
(For example, scores of many students)

• Using values of data, it sorts in Θ(n) time.

Counting sort
Input: data[i]∈{1,…,k} for 1≦i≦n, k∈O(n)
Idea: Decide the position of element x

– Count the number of element less than x
That number indicates the position of x

Example:
3 7 4 1 2 5

1 2 3 4 5 7

1 2 3 4 5 6 7
0 1 2 3 4 5 5

1 2 3 4 5 6 7
1 1 1 1 1 0 1

Counting sort

Q. When array contains many data of same values?
A. Use 3 arrays a[], b[], c[] as follows;

(a[]: input, b[]: sorted data, c: counter)
– c[a[i]] counts the number of data equal to a[i]

– For each j with 0≦j≦k,
let c’[j] := c[0] + … + c[j-1] + c[j], then
c’[j] indicates the number of data whose value is less
than j

– Copy a[i] to certain b[] according to the value of c’[]

CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[a[j]] = c[a[j]] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 downto 0
b[c[a[j]]-1] = a[j];
c[a[j]] = c[a[j]] - 1;

}

Counting sort: program

Initialize counter c[]

Count the number
of the value in a[i]

Compute c’[] from c[]
In an efficient way!

Copy a[] to b[]

Counting sort: Example
Sort integers (3,6,4,1,3,4,1,4)

• After (2);
c[]=(0,2,0,2,3,0,1)

• After (3);
c[]=(0,2,2,4,7,7,8)

CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[a[j]] = c[a[j]] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 to downto 0
b[c[a[j]]-1] = a[j];
c[a[j]] = c[a[j]] - 1;

}

(2)

(3)a[7]=4 => b[c[4]-1] = b[6], c[4]=6
a[6]=1 => b[c[1]-1] = b[1], c[1]=1
a[5]=4 => b[c[4]-1] = b[5], c[4]=5
a[4]=3 => b[c[3]-1] = b[3], c[3]=3
a[3]=1 => b[c[1]-1] = b[0], c[1]=0
a[2]=4 => b[c[4]-1] = b[4], c[4]=4
a[1]=6 => b[c[6]-1] = b[7], c[6]=7
a[0]=3 => b[c[3]-1] = b[2], c[3]=2

Counting sort: Example
Sort integers (3,6,4,1,3,4,1,4)

• After (2);
c[]=(0,2,0,2,3,0,1)

• After (3);
c[]=(0,2,2,4,7,7,8)

CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[a[j]] = c[a[j]] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 to downto 0
b[c[a[j]]-1] = a[j];
c[a[j]] = c[a[j]] - 1;

}

(2)

(3)a[7]=4 => b[c[4]-1] = b[6], c[4]=6
a[6]=1 => b[c[1]-1] = b[1], c[1]=1
a[5]=4 => b[c[4]-1] = b[5], c[4]=5
a[4]=3 => b[c[3]-1] = b[3], c[3]=3
a[3]=1 => b[c[1]-1] = b[0], c[1]=0
a[2]=4 => b[c[4]-1] = b[4], c[4]=4
a[1]=6 => b[c[6]-1] = b[7], c[6]=7
a[0]=3 => b[c[3]-1] = b[2], c[3]=2

Sort is said to be “stable”
when two variables of the
same value in order after
sorting.

	I111E Algorithms & Data Structures�9. Sorting (2): �Merge sort, quick sort, analysis, and counting sort
	Merge sort
	Merge sort
	Implementation of merge sort:�Typical recursive calls
	How to merge?
	How to merge?
	Outline of merge sort
	Implementation of merging
	Merge sort: Time complexity
	Merge sort: Space complexity
	Monotone sequence merge sort
	Monotone sequence merge sort:�Time complexity
	Quick sort
	Quick sort
	Quick sort: Example�Step 1. Choose an element x
	Quick sort: Example�Step 2. Move element w.r.t x:
	Quick sort: Example�Step 3. Sort left and right sequences recursively
	Quick sort: Program
	Quick sort: Time complexity�Worst case
	Analysis of QuickSort
	Analysis of QuickSort
	Analysis of QuickSort
	Analysis of QuickSort
	Analysis of QuickSort
	Computational complexity of the sorting problem
	Sort on Comparison model
	Computational complexity of sort on comparison model
	Computational complexity of comparison sort: lower bound
	Computational complexity of comparison sort: lower bound
	Computational complexity of comparison sort: lower bound
	Non-comparison sort: Counting sort
	Counting sort
	Counting sort
	Counting sort: program
	Counting sort: Example�Sort integers (3,6,4,1,3,4,1,4)
	Counting sort: Example�Sort integers (3,6,4,1,3,4,1,4)

