C Version

1111E Algorithms & Data Structures
10. Graph Algorithms (1):

Graph Representations, Breadth-
First Search and Depth-First Search

School of Information Science

Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp
2019-11-20

All materials are available at
http://www.jaist.ac.jp/~uehara/couse/2019/i1lle

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

Graph

* “Vertices” (nodes) are joined by edges (arcs)

— Directed graph: each edge has direction
— Undirected graph: each edge has no direction

Example: railway in Tokyo Example:
relationship between topics

Ueno \
Sort
O

Array

Shinjuku o
Tokyo O— Y

randomization

lkebukuro

Graph G = (V, E)

— V: vertex set, E: edge set
Vertices: u, v, .. €V
Edges: e={u,v} € E

(undirected)

a=(u,v) €E

(directed)

Weighted variants;
— W(u)l W(e)
— Distance, cost, time, etc.

Shinjuku / Ikebukuro

\ / \

To kyo

Graph: basic notions/notations (1/2)

* Path: sequence of vertices joined by edges

— Simple path: it never visit the same vertex again

Moo om0 o

* Cycle, closed path: path from vtov

* Connected graph: Every pair of vertices is

joined by a path
O
w Q\Q

O

Graph: basic notions/notations (2/2)

e Forest: Graph with no cycle (acyclic)

* Tree: Connected acyclic graph

e

 Complete graph: Every pair of vertices is

connected by an edge, denoted by K,, where n
is the number of vertices.

— Example: K, @

Computational complexity of graph
problems

* The number n of vertices, the number m of edges;
— Undirected graph: m = n(n-1)/2
— Directed graph: m = n(n-1)
*m € O(n?)

* Every tree has m=n-1 edges, so m& O(n).

 Computational complexity of graph algorithm is
described by equations of n and m.

Representative representations of
a graph in computer

* Adjacency matrix

M =

* Adjacency list

1

2
3

4

—,

(0

0

0

\

~

\

T

4

~

2

List of neighbors

Vertex
(array of pointers)

J 4

11 0

001\

10 1

0 0 0/
R
2@/&0
_ 3

Representation of a graph:
matrix representation (adjacency matrix)

e (uv) € E= Miu,v]=1
. (U, V) ¢ F=> M[u, V] =0 edge-weighted graph.
1 4 /O
2 O M — 0
10

3 \O

C = O =
o o —
S —— — 0O

Representation of a graph:
list representation (adjacency list)

e (uv) € ELv e L(u)
— L(u) is the list of neighbors of u

1 I 2 > 3
2 \\»

4
3 \\

» 4

4 2

List of neighbors

Vertex

vertex-weighted graph.

(array of pointers)

Adj. matrix v.s. Adj. list

e Space complexity
— Adjacency matrix: ©(n?)
— Adjacency list: ©(m log n)
* Time complexity of checking if (u,v) € E?
— Adjacency matrix: ©(1)
— Adjacency list : O(n)

Q. How about update graph?
(e.g., add/remove vertex/edge)

Search in Graph

Search in Graph

e How can we check all vertices
in a graph systematically,

and solve some problem?
— e.g., Do you have a path from Ato D?

 Two major (efficient) algorithms:

— Breadth-First Search: A->B->C->D->F->E
it starts from a vertex v, and visit all (reachable)
vertices from the vertices closer to v.

— Depth-First Search: A->B->D->E->C->F
it starts from a vertex v, and visit every reachable
vertex from the current vertex, and back to the last
vertex which has unvisited neighbor.

BFS (Breadth-First Search)

* For a graph G=(V,E) and any start point s€V, all
reachable vertices from s will be visited from s in
order of distance from s.

e QOutline of method: color all vertices by white,
gray, or black as follows;
— White: Unvisited vertex
— Gray: It is visited, but it has unvisited neighbors

— Black: It is already visited, and all neighbors are also
visited

— Search is completed when all vertices got black
— Color of each vertex is changed as white—>gray—>black

BFS (Breadth-First Search):
Program code

BFS(V,E,s){
for veVv do toWhite(v); endfor

toGray(s); Queue is the best structure!

Q={s};
while(Q!={}){
u=pop(Q); // Q 2 Q’ where Q={u}uQ’
for ve{veVv|(v,u)€E}
if isWhite(v) then
toGray(v); push(Q,v);
endif

endfor 4 last
toBlack(u); (processed lastly)

} wlaEe u !lac! w”en I! ”as no unvm!eH nelg”Bors

}

Q=i1}

u=lI,
visit 2
Q={2}
black 1

u=2,
visit 3,4,5

Q={3.4,5}
black 2

u=3,
visit null

Q=14,5}
black 3

1

N

2

BFS (Breadth-First Search): Example

u=4,
visit null

Q={5}
black 4

u=ys,
visit 6
Q=16}
black 5

u=>o,
visit null
Q={}
black 6

15

BFS:

_ _ BFS(V,E,s){
Time complexity for VEV do
Consider from the toWhite(v);

viewpoints of vertices & endfor

edges toGray(s);
' Q=1{s};
while(Q!={}){

* Each vertex never gets white
again after initialization.

 Each vertex gets into Q and u=pop(Q);
gets out from Q at most once ‘cor.‘ V?{VEY| (v,u)€EE}
* Each edge is checked at most if isWhite(v) then
once toGray(v);

— when one endpoint vertex is push(Q,V);
taken from Q and its neighbg endif
are checked along edges endfor
« ~O(lV]+|E]) ‘ toBlack(u);

T

It’s not easy to do efficiently in adj. matrix

Application of BFS:
Shortest path problem on graph

Definition of “distance”
— Start vertex v has distance O

— Except start vertex, each vertex u has distance d+1,
where d is the distance of parent of u.

 On BFS, modify that each gray vertex receives
its “distance” from black neighbor, then you
get (shortest) distance from v to it.

DFS (Depth-First Search)

* For a graph G=(V,E) and start point s€V, it
follows reachable vertices from s until it
reaches a vertex that has no unvisited
neighbor, and returns to the last vertex that

nas unvisited neighbors.

dfs(V, E, s) { 1 Program code is
visit(s) // make gray . relatively simple, and
for (s, w)E€E do vertices are put into a

if notVisited(w) then
dfs(V, E, w)
toBlack(u)

stack when dfs makes a
recursive call.

J

DES: Example

DFS(1)

DFS(2)

DFS(3)

DFS(5)

DFS(6)

DFS(6)

DFS(5)
DFS(3)
DFS(2)

DFS(4)

DFS(2)

DFS non-recursive version
: We can use stack explicitly to search a tree
DFS(V,E,s){

for veV do toWhite(v); endfor

toray(s); TTTNGFETVRORES
S={s};

while(S!={}){

u=pop(S);
for ve{veV|(u,v)€EE}
if isnotBlack(v) then

toGray(v); push(S,v);

endif

endfor

toBlack(u);

at first)

} Viake U black when It has no unvisited neignpors

¥

Example (non-rec. ver.)i
3

S={1}

u=1
visit 2
S={2}
black 1

u=2

visit 5,4,3
S={5,4,3}
black 2

u=3

visit 5
S={5,4,5}
black 3

4

1

..o
pl
. e
< e

u=>

visit 6
S={5,4,6}
black 5

u=6
visit null
S={5,4}
black 6

u=4

visit null
S={5}
black 4

u=>5
visit null

S=1{}

21

Application of DFS:
Find connected components in a graph

* For a given (disconnected) graph G = (V, E),
divide it into connected graphs G, = (V,, E,), ...,
G.=(V, E).

— We will give a numbering array cn[] such that
VuveV, ueV, AveV, A iz = cnlu] # cn[v]

//G ~N ™
L
.. © ’
N\ 0 / Y,

Application of DFS:

Find connected components of a graph

cc(V,E,en){ //cn[|V]]
for VEV do
cn[v] = 0; /*initialize*/
endfor
k = 1;
for VEV do dfs(V,E,v,k,cn){
if cn[v]==0 then cn[v]=k;
dfs(V,E,v,k,cn); for UE{Ul(V,U)EE} do
k=k+1; if cn[u]==0 then
endif dfs(V,E,u,k,cn);
endfor endif

} endfor
}

BFS v.s. DFS on a graph

 Two major (efficient) algorithms:
— Breadth-First Search:
It is easy to implement by “queue”
— Depth-First Search:
It is easy to implement by “stack”

— Both algorithms are easy to implement to run in
O(|V|+|E|) time if you use reasonable data
representation and data structure. (This time
complexity is optimal since you have to check all input
data.)

— Depending on applications, we choose better algorithm.

	I111E Algorithms & Data Structures�10. Graph Algorithms (1): �Graph Representations, Breadth-First Search and Depth-First Search
	Graph
	Graph: Notation
	Graph: basic notions/notations (1/2)
	Graph: basic notions/notations (2/2)
	Computational complexity of graph problems
	Representative representations of �a graph in computer
	Representation of a graph:�matrix representation (adjacency matrix)
	Representation of a graph: �list representation (adjacency list)
	Adj. matrix v.s. Adj. list
	スライド番号 11
	Search in Graph
	BFS (Breadth-First Search)
	BFS (Breadth-First Search):�Program code
	BFS (Breadth-First Search): Example�
	BFS: �Time complexity
	Application of BFS:�Shortest path problem on graph
	DFS (Depth-First Search)
	DFS: Example
	DFS　non-recursive version�: We can use stack explicitly to search a tree
	Example (non-rec. ver.)�
	Application of DFS:�Find connected components in a graph
	Application of DFS:�Find connected components of a graph
	BFS v.s. DFS on a graph

