
I111E Algorithms & Data Structures
10. Graph Algorithms (1):

Graph Representations, Breadth-
First Search and Depth-First Search

1

School of Information Science
Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

2019-11-20
All materials are available at

http://www.jaist.ac.jp/~uehara/couse/2019/i111e

C Version

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

• “Vertices” (nodes) are joined by edges (arcs)
– Directed graph: each edge has direction
– Undirected graph: each edge has no direction

Shinjuku

randomization

UenoIkebukuro

Example:
relationship between topics

Graph

Example: railway in Tokyo

2

Tokyo

SortArray

• Graph G = (V, E)
– V: vertex set, E: edge set

• Vertices: u, v, … ∈ V
• Edges: e = {u, v} ∈ E

(undirected)
a = (u, v) ∈ E

(directed)
• Weighted variants;

– w(u), w(e)
– Distance, cost, time, etc.

u1

u2
u10

u3

u4

u9

u7
u6u5

u8

Tokyo

Ueno

IkebukuroShinjuku

3

Graph: Notation

Graph: basic notions/notations (1/2)

• Path: sequence of vertices joined by edges
– Simple path: it never visit the same vertex again

• Cycle, closed path: path from v to v
• Connected graph: Every pair of vertices is

joined by a path

4

Graph: basic notions/notations (2/2)
• Forest: Graph with no cycle (acyclic)
• Tree: Connected acyclic graph

• Complete graph: Every pair of vertices is
connected by an edge, denoted by Kn, where n
is the number of vertices.
– Example: K5

5

Computational complexity of graph
problems

• The number n of vertices, the number m of edges;
– Undirected graph: m ≦ n(n-1)/2
– Directed graph: m ≦ n(n-1)

• m ∈ O(n2)

• Every tree has m=n-1 edges, so m∈ O(n).

• Computational complexity of graph algorithm is
described by equations of n and m.

6

Representative representations of
a graph in computer

• Adjacency matrix

• Adjacency list
1

2

3

4
4

2 3

4

2

Vertex
(array of pointers)

List of neighbors

1

2

3

4

7

1

2

3

4

Representation of a graph:
matrix representation (adjacency matrix)

8

• (u, v) ∈ E ⇒ M[u, v] = 1
• (u, v) ∉ E ⇒ M[u, v] = 0

It is easy to extend
edge-weighted graph.

• (u, v) ∈ E ⇔ v ∈ L(u)
– L(u) is the list of neighbors of u

1

2

3

4
4

2 3

4

2

Vertex
(array of pointers)

List of neighbors

Representation of a graph:
list representation (adjacency list)

9

It is easy to extend
vertex-weighted graph.

1

2

3

4

• Space complexity
– Adjacency matrix: Θ(n2)
– Adjacency list: Θ(m log n)

• Time complexity of checking if (u, v) ∈ E ?
– Adjacency matrix: Θ(1)
– Adjacency list : Θ(n)

Adj. matrix v.s. Adj. list

10

Search in Graph

11

Search in Graph

• How can we check all vertices
in a graph systematically,
and solve some problem?
– e.g., Do you have a path from A to D?

• Two major (efficient) algorithms:
– Breadth-First Search: A -> B -> C -> D -> F -> E

it starts from a vertex v, and visit all (reachable)
vertices from the vertices closer to v.

– Depth-First Search: A -> B -> D -> E -> C -> F
it starts from a vertex v, and visit every reachable
vertex from the current vertex, and back to the last
vertex which has unvisited neighbor.

12

A

B C

D

E

F

BFS (Breadth-First Search)

• For a graph G=(V,E) and any start point s∈V, all
reachable vertices from s will be visited from s in
order of distance from s.

• Outline of method: color all vertices by white,
gray, or black as follows;
– White: Unvisited vertex
– Gray: It is visited, but it has unvisited neighbors
– Black: It is already visited, and all neighbors are also

visited

– Search is completed when all vertices got black
– Color of each vertex is changed as whitegrayblack

13

BFS(V,E,s){
for v∈V do toWhite(v); endfor
toGray(s);
Q={s};
while(Q!={}){

u=pop(Q); // Q  Q’ where Q={u}∪Q’
for v∈{v∈V|(v,u)∈E}

if isWhite(v) then
toGray(v); push(Q,v);

endif
endfor
toBlack(u);

}
}

BFS (Breadth-First Search):
Program code

14

Queue is the best structure!

Take u from left (the first gray node)

If neighbor v of u is white,

Push v to the right of Q
(processed lastly)

Make u black when it has no unvisited neighbors

21 3

4 5 6
Q={1}

1 2 3

4 5 6

u=1,
visit 2
Q={2}
black 1

1 2 3

4 5 6

u=2,
visit 3,4,5
Q={3,4,5}
black 2

1 2 3

4 5 6

u=3,
visit null
Q={4,5}
black 3

1 2 3

4 5 6

u=4,
visit null
Q={5}
black 4

1 2 3

4 5 6

u=5,
visit 6
Q={6}
black 5

1 2 3

4 5 6

u=6,
visit null
Q={}
black 6

BFS (Breadth-First Search): Example

15

Time complexity is not easy from program…BFS:
Time complexity

BFS(V,E,s){
for v∈V do

toWhite(v);
endfor
toGray(s);
Q={s};
while(Q!={}){

u=pop(Q);
for v∈{v∈V|(v,u)∈E}

if isWhite(v) then
toGray(v);
push(Q,v);

endif
endfor
toBlack(u);

}}
16It’s not easy to do efficiently in adj. matrix

Consider from the
viewpoints of vertices &
edges
• Each vertex never gets white

again after initialization.
• Each vertex gets into Q and

gets out from Q at most once
• Each edge is checked at most

once
– when one endpoint vertex is

taken from Q and its neighbors
are checked along edges

• ∴ 𝑂𝑂(𝑉𝑉 + 𝐸𝐸)

Application of BFS:
Shortest path problem on graph

17

Definition of “distance”
– Start vertex v has distance 0
– Except start vertex, each vertex u has distance d+1,

where d is the distance of parent of u.

• On BFS, modify that each gray vertex receives
its “distance” from black neighbor, then you
get (shortest) distance from v to it.

DFS (Depth-First Search)
• For a graph G=(V,E) and start point s∈V, it

follows reachable vertices from s until it
reaches a vertex that has no unvisited
neighbor, and returns to the last vertex that
has unvisited neighbors.

18

dfs(V, E, s) {
visit(s) // make gray
for (s, w)∈E do

if notVisited(w) then
dfs(V, E, w)

toBlack(u)
}

Program code is
relatively simple, and
vertices are put into a

stack when dfs makes a
recursive call.

DFS: Example
21 3

4 5 6
DFS(1)

21 3

4 5 6
DFS(2)

21 3

4 5 6
DFS(3)

21 3

4 5 6
DFS(5)

21 3

4 5 6
DFS(6)

21 3

4 5 6
DFS(6)

21 3

4 5 6

DFS(5)
DFS(3)
DFS(2)

21 3

4 5 6

DFS(4)

21 3

4 5 6

DFS(2)

19

DFS(V,E,s){
for v∈V do toWhite(v); endfor
toGray(s);
S={s};
while(S!={}){

u=pop(S);
for v∈{v∈V|(u,v)∈E}
if isnotBlack(v) then

toGray(v); push(S,v);
endif

endfor
toBlack(u);

}
}

DFS non-recursive version
: We can use stack explicitly to search a tree

20

stack of gray nodes

Pop u from top (last node in gray)

If neighbor v of u is not black

Push v into S on top
(which will be processed
at first)

Make u black when it has no unvisited neighbors

Example (non-rec. ver.)
21 3

4 5 6

S={1}

21 3

4 5 6

u=1
visit 2
S={2}
black 1

21 3

4 5 6

u=2
visit 5,4,3
S={5,4,3}
black 2

21 3

4 5 6

u=3
visit 5
S={5,4,5}
black 3

21 3

4 5 6

u=5
visit 6
S={5,4,6}
black 5

21 3

4 5 6

u=6
visit null
S={5,4}
black 6

21 3

4 5 6

u=4
visit null
S={5}
black 4

21 3

4 5 6

u=5
visit null
S={}

21

• For a given (disconnected) graph G = (V, E),
divide it into connected graphs G1 = (V1, E1), …,
Gc = (Vc, Ec).
– We will give a numbering array cn[] such that
∀u,v∈V, u∈Vi ∧ v∈Vj ∧ i≠j ⇒ cn[u] ≠ cn[v]

Application of DFS:
Find connected components in a graph

1

1 1

1

2

2

2
22

G1 G2 G

cc(V,E,cn){ //cn[|V|]
for v∈V do

cn[v] = 0; /*initialize*/
endfor
k = 1;
for v∈V do

if cn[v]==0 then
dfs(V,E,v,k,cn);
k=k+1;

endif
endfor

}

dfs(V,E,v,k,cn){
cn[v]=k;
for u∈{u|(v,u)∈E} do

if cn[u]==0 then
dfs(V,E,u,k,cn);

endif
endfor

}

Application of DFS:
Find connected components of a graph

23

BFS v.s. DFS on a graph
• Two major (efficient) algorithms:

– Breadth-First Search:
It is easy to implement by “queue”

– Depth-First Search:
It is easy to implement by “stack”

– Both algorithms are easy to implement to run in
O(|V|+|E|) time if you use reasonable data
representation and data structure. (This time
complexity is optimal since you have to check all input
data.)

– Depending on applications, we choose better algorithm.
24

	I111E Algorithms & Data Structures�10. Graph Algorithms (1): �Graph Representations, Breadth-First Search and Depth-First Search
	Graph
	Graph: Notation
	Graph: basic notions/notations (1/2)
	Graph: basic notions/notations (2/2)
	Computational complexity of graph problems
	Representative representations of �a graph in computer
	Representation of a graph:�matrix representation (adjacency matrix)
	Representation of a graph: �list representation (adjacency list)
	Adj. matrix v.s. Adj. list
	スライド番号 11
	Search in Graph
	BFS (Breadth-First Search)
	BFS (Breadth-First Search):�Program code
	BFS (Breadth-First Search): Example�
	BFS: �Time complexity
	Application of BFS:�Shortest path problem on graph
	DFS (Depth-First Search)
	DFS: Example
	DFS　non-recursive version�: We can use stack explicitly to search a tree
	Example (non-rec. ver.)�
	Application of DFS:�Find connected components in a graph
	Application of DFS:�Find connected components of a graph
	BFS v.s. DFS on a graph

