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• “Vertices” (nodes) are joined by edges (arcs)
– Directed graph: each edge has direction
– Undirected graph: each edge has no direction
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• Graph G = (V, E)
– V: vertex set, E: edge set

• Vertices: u, v, … ∈ V
• Edges:  e = {u, v} ∈ E

(undirected)
a = (u, v) ∈ E

(directed)
• Weighted variants;

– w(u), w(e)
– Distance, cost, time, etc.
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Graph: Notation



Graph: basic notions/notations (1/2)

• Path: sequence of vertices joined by edges
– Simple path: it never visit the same vertex again

• Cycle, closed path: path from v to v
• Connected graph: Every pair of vertices is 

joined by a path

4



Graph: basic notions/notations (2/2)
• Forest: Graph with no cycle (acyclic)
• Tree: Connected acyclic graph

• Complete graph: Every pair of vertices is 
connected by an edge, denoted by Kn, where n 
is the number of vertices.
– Example: K5
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Computational complexity of graph 
problems

• The number n of vertices, the number m of edges;
– Undirected graph: m ≦ n(n-1)/2
– Directed graph: m ≦ n(n-1)

• m ∈ O(n2)

• Every tree has m=n-1 edges, so m∈ O(n).

• Computational complexity of graph algorithm is 
described by equations of n and m.
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Representative representations of 
a graph in computer

• Adjacency matrix

• Adjacency list
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Representation of a graph:
matrix representation (adjacency matrix)
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• (u, v) ∈ E ⇒ M[u, v] = 1
• (u, v) ∉ E ⇒ M[u, v] = 0

It is easy to extend 
edge-weighted graph.



• (u, v) ∈ E ⇔ v ∈ L(u)
– L(u) is the list of neighbors of u
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Representation of a graph: 
list representation (adjacency list)
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It is easy to extend 
vertex-weighted graph.
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• Space complexity
– Adjacency matrix: Θ(n2)
– Adjacency list: Θ(m log n)

• Time complexity of checking if  (u, v) ∈ E ?
– Adjacency matrix: Θ(1)
– Adjacency list : Θ(n)

Adj. matrix v.s. Adj. list
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Search in Graph
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Search in Graph

• How can we check all vertices 
in a graph systematically, 
and solve some problem?
– e.g., Do you have a path from A to D?

• Two major (efficient) algorithms:
– Breadth-First Search: A -> B -> C -> D -> F -> E

it starts from a vertex v, and visit all (reachable) 
vertices from the vertices closer to v.

– Depth-First Search: A -> B -> D -> E -> C -> F
it starts from a vertex v, and visit every reachable 
vertex from the current vertex, and back to the last 
vertex which has unvisited neighbor.
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BFS (Breadth-First Search)

• For a graph G=(V,E) and any start point s∈V, all 
reachable vertices from s will be visited from s in 
order of distance from s.

• Outline of method: color all vertices by white, 
gray, or black as follows;
– White: Unvisited vertex
– Gray: It is visited, but it has unvisited neighbors
– Black: It is already visited, and all neighbors are also 

visited

– Search is completed when all vertices got black
– Color of each vertex is changed as whitegrayblack
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BFS(V,E,s){
for v∈V do toWhite(v); endfor
toGray(s);
Q={s};
while( Q!={} ){

u=pop(Q); // Q  Q’ where Q={u}∪Q’
for v∈{v∈V|(v,u)∈E}

if isWhite(v) then
toGray(v); push(Q,v);

endif
endfor
toBlack(u);

}
}

BFS (Breadth-First Search):
Program code
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Queue is the best structure!

Take u from left (the first gray node)

If neighbor v of u is white,

Push v to the right of Q
(processed lastly)

Make u black when it has no unvisited neighbors
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Q={1}
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u=1, 
visit 2
Q={2}
black 1

1 2 3

4 5 6

u=2, 
visit 3,4,5
Q={3,4,5}
black 2

1 2 3

4 5 6

u=3, 
visit null
Q={4,5}
black 3

1 2 3

4 5 6

u=4, 
visit null
Q={5}
black 4

1 2 3

4 5 6

u=5, 
visit 6
Q={6}
black 5

1 2 3

4 5 6

u=6, 
visit null
Q={}
black 6

BFS (Breadth-First Search): Example
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Time complexity is not easy from program…BFS: 
Time complexity

BFS(V,E,s){
for v∈V do

toWhite(v);
endfor
toGray(s);
Q={s};
while( Q!={} ){

u=pop(Q);
for v∈{v∈V|(v,u)∈E}

if isWhite(v) then
toGray(v);
push(Q,v);

endif
endfor
toBlack(u);

}}
16It’s not easy to do efficiently in adj. matrix

Consider from the 
viewpoints of vertices & 
edges
• Each vertex never gets white 

again after initialization.
• Each vertex gets into Q and 

gets out from Q at most once
• Each edge is checked at most 

once
– when one endpoint vertex is 

taken from Q and its neighbors 
are checked along edges

• ∴ 𝑂𝑂( 𝑉𝑉 + 𝐸𝐸 )



Application of BFS:
Shortest path problem on graph
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Definition of “distance”
– Start vertex v has distance 0
– Except start vertex, each vertex u has distance d+1, 

where d is the distance of parent of u.

• On BFS, modify that each gray vertex receives 
its “distance” from black neighbor, then you 
get (shortest) distance from v to it.



DFS (Depth-First Search)
• For a graph G=(V,E) and start point s∈V, it 

follows reachable vertices from s until it 
reaches a vertex that has no unvisited 
neighbor, and returns to the last vertex that 
has unvisited neighbors.
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dfs(V, E, s) {
visit(s) // make gray
for  (s, w)∈E  do

if  notVisited(w)  then
dfs(V, E, w)

toBlack(u)
}

Program code is 
relatively simple, and 
vertices are put into a 

stack when dfs makes a 
recursive call.



DFS: Example
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DFS(V,E,s){
for v∈V do toWhite(v); endfor
toGray(s);
S={s};
while( S!={} ){

u=pop(S); 
for v∈{v∈V|(u,v)∈E}
if isnotBlack(v) then

toGray(v); push(S,v);
endif

endfor
toBlack(u);

}
}

DFS non-recursive version
: We can use stack explicitly to search a tree
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stack of gray nodes

Pop u from top (last node in gray)

If neighbor v of u is not black

Push v into S on top
(which will be processed
at first )

Make u black when it has no unvisited neighbors



Example (non-rec. ver.)
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S={1}
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u=1
visit 2
S={2}
black 1
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u=2
visit 5,4,3
S={5,4,3}
black 2
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u=3
visit 5
S={5,4,5}
black 3
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u=5
visit 6
S={5,4,6}
black 5

21 3

4 5 6

u=6
visit null
S={5,4}
black 6
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u=4
visit null
S={5}
black 4
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u=5
visit null
S={}
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• For a given (disconnected) graph G = (V, E), 
divide it into connected graphs G1 = (V1, E1), …, 
Gc = (Vc, Ec).
– We will give a numbering array cn[] such that 
∀u,v∈V,  u∈Vi ∧ v∈Vj ∧ i≠j ⇒ cn[u] ≠ cn[v] 

Application of DFS:
Find connected components in a graph
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cc(V,E,cn){ //cn[|V|]
for v∈V do

cn[v] = 0; /*initialize*/
endfor
k = 1;
for v∈V do

if cn[v]==0 then
dfs(V,E,v,k,cn);
k=k+1;

endif
endfor

}

dfs(V,E,v,k,cn){
cn[v]=k;
for u∈{u|(v,u)∈E} do

if cn[u]==0 then
dfs(V,E,u,k,cn);

endif
endfor

}

Application of DFS:
Find connected components of a graph
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BFS v.s. DFS on a graph
• Two major (efficient) algorithms:

– Breadth-First Search: 
It is easy to implement by “queue”

– Depth-First Search: 
It is easy to implement by “stack”

– Both algorithms are easy to implement to run in 
O(|V|+|E|) time if you use reasonable data 
representation and data structure. (This time 
complexity is optimal since you have to check all input 
data.)

– Depending on applications, we choose better algorithm.
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