
I111E Algorithms & Data Structures
1. Basic Programming

1

School of Information Science
Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

2019-10-16

All materials are available at
http://www.jaist.ac.jp/~uehara/couse/2019/i111e

C Version

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

Summary
• I111 Algorithms and Data Structures
• Lecturers: Ryuhei Uehara & Giovanni Viglietta
• Goal: To understand the meaning and

importance of algorithms.

2

A formal procedure for solving a problem is called an algorithm and a way of
storing data in a computer is called a data structure. There may be a number
of combinations of algorithms and data structures for a problem, in general. It
is important to evaluate them by computation time and space requirement to
choose the best combination. It is not sufficient to understand conventional
algorithms, but it is more meaningful to master how to design algorithms. In
this lecture, a general but basic scheme for algorithm design through
validation of the correctness of algorithms and investigation of improvement
of algorithm efficiency is explained.

References

• Textbooks
– “Theory of Algorithms,” Tetsuo Asano, Koichi

Wada, Toshimitsu Masuzawa, 2003, Ohm
Publishing Co. (in Japanese)

– “First Course in Algorithms through Puzzles,”
Ryuhei Uehara, 2019, Springer.

– “Introduction to Algorithms, 3rd ed.” Thomas H.
Cormen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein, 2010, MIT Press.

We do not necessarily follow the textbooks,,,
3

Evaluations

• Viewpoint of evaluation：
– Comprehension of theory and implementation of

algorithms and data structures.

• Evaluation method：
– Reports (40pts) and examination (60pts)

• I’m now planning 2 reports with final examination.

4

Schedule of Lectures
• Examination: 12/4?

• Wednesdays (10:50-12:30)
– 10/16, 10/23, 10/30, 11/06, 11/13, 11/20, 11/27

• Mondays (09:00-10:40)
– 10/21, 10/28, 11/11, 11/18, 11/25, 11/28, 12/02

• Tutorial Hours (13:30-15:10) on Mondays
– Basically, you can ask us at our office (I67).
– Sometimes, we will give supplemental lectures, e.g.,

answers and comments on reports, etc.
5

Requirements
• Lectures are given in English
• You can ask/answer in English or Japanese

• Note that “algorithm” and “programming” are different.
“programming” is implementation of algorithm.

• We do not assume any specific language, but we use C as an
example.

• You can use any programming language such as c, C++, Java,
Delphi,,,, perl, ruby, python, basic… in your reports.

6

What’s an algorithm?

• What’s a good algorithm?
– It outputs a correct answer for any input
– It outputs an answer in reasonable cost

• polynomial time of input length
• polynomial space of input length

• What’s a bad algorithm?
– It takes a loooong time for some input
– It uses a huuuge memory for some input
– (There exists unsolvable problems by any program)

7

Algorithm = Description of a method of
solving a problem using computer

Models of “computation”

• Efficiency of algorithms may change according to
computation model
– What are “basic operations”?
– What kind of data can it store?

• Natural numbers, real numbers (?), images, musics…?
• There are some standard models

– Turing machine: That Turing innovated. Base of all
computation models.

– RAM model: Standard model for algorithm theory.
– We may use models based on GPU and/or quantum

computation in near future…
8

How can we evaluate time and space?
→ First of all, how do computers work?

Turing Machine Model

• Simple theoretical model
• Any computable problem is also solvable by a Turing

machine
• It is so simple that programming is very tedious

– No mathematical operations including +, -, ×, ÷
– It is hard to consider “essence” of algorithms 9

Finite
Control

MotorRead/write
Head

Memory tape

RAM Model
(Random Access Memory)

• It consists Memory and CPU (Central Processing Unit)
– We do not mind Input/Output

• It is essentially the same as your computer
• CPU can access any address randomly (not sequentially) in a unit cycle
• Programming language C is a system that shows you this structure

implicitly (like arrays and pointers)
10

In your computer;
Address bits ≒ Data bits = k
The number of words ≦ 2k

Address Data

Finite control

Program counter: PC
Some registers

word

When we design an
algorithm, we suppose

memory is so huge that we
have no overflow.

Programming Language

• Compiler translates any “readable” program (for
human) to an executable file in machine language
(for the CPU)

• E.g. Programming language C; It is okay if you
know…
1. variable
2. array
3. pointer
4. control statement (e.g., if, while)
5. recursive call

11

Basic of C: Hello World
• We use C language, but the other languages (C++, C#,

Java, etc.) are basically similar
• We give very rough basic programming
• Output “Hello World” on display

12

#include <stdio.h> /*use printf*/

main(){
printf(“Hello World”);

}

Semi-colon after
a statement

statement

★ In C#, use System.Out.WriteLine instead of printf.

Basic of C: Arithmetic operations

• Basic operations: +, -, *, /, %

– Except %, the operations can be used for
integers (int, etc.) and real numbers (float,
double, etc.)

13

Exp. Meaning
3+4 Add 3 and 4
3-1 Subtract 1 from 3
3*3 Multiply 3 and 3
4/2 Divide 4 by 2
3%2 Reminder by dividing 3 by 2

Basic of C: Notes for arithmetic ops.

• (int/int) is rounded (by cutting off)
– Ex: 1/3 is 0, whereas 1.0/3 is 0.3333…

• double av = (int)sum/(int)num (Fail)
• No comma for delimiter

– Ex: 10,000 is not okay. Write as 10000.
• We use () to control ordering:

– We cannot use {} or []
– Ex: {(3+4)*3+4}*6 is not correct. Write as
((3+4)*3+4)*6

• No power operation (we can use ** in some
languages)

14

Basic of C: Variable

• Variable: It is a memory cell, that indicates the “place”
to memory a result of computation

• Rules for naming
– Start with alphabet (UPPER, lower letters, and _)
– From the second letter, you can use alphabets and

numbers
• Not any other

– Upper and lower letters are different
• FF, ff, fF, and Ff are all different names

– Not reserved words in C (e.g., main, include, return)

– Good: x, orz, T_T, IE9, projectX, ff4, y2k, JAIST
– Bad: 7th, uehara@jaist, ac.jp, tel#

15

Basic of C: Assignment statement
• a=5

– Store the value 5 to the place named by a in memory
• a=b+5

– Store value of “value stored at the place named by b (or
value of the variable b) plus 5” to the place named by a

• a=a+1

– Store value of “the value of variable a plus 1” to the
place named by a 16

a
Memory cell

5

…
a
b 3

8 (The value of b)＋5

a 8
9

(value of variable a)＋1 = 8+1

“=“ is not “equal” in the
sense of mathematics

Basic of C: Declaration of variable

• You have to declare variables beforehand (in C
language)

17

main(){
int a,b;
a = 5; b = 3;
printf(“a+b=%d”,a+b);

}

main(){
a = 5;
printf(“%d”,a);

}

Good It is not good!Variables a and
b in integer

Bad

Note: Recent language (like python) does not require
to declare beforehand. The system guesses and makes
simpler, but sometimes causes bugs…

Basic of C: Mathematical functions

• Source code: include the following header file
#include <math.h>

• Compile: Option -lm is required
– gcc main.c –lm

18

Square
root

Power

Logarithm

Logarithm

Exponential

function Math．symbol type Parameter
type

★ Write a = Math.sqrt(b) in C#

Basic of C: Control statements
if statement – conditional branch (1/2)
• Grammar

– Ex: Output EVEN if n is even, and ODD if it is odd.

19

if (condition) state 1;
else state 2;

conditi
on

state 1 state 2

next statement

true

false

If condition is true, perform
statement 1, and perform
statement 2 if it is false

if(n%2==0) printf(“EVEN”);
else printf(“ODD”);

We use “==“ to check
equality in C.

Basic of C: Control statements
if statement – conditional branch (2/2)
• else part can be omitted

20

if(condition) state 1; conditi
on

state 1

next statement

true

false

If condition is true, perform statement 1,
and perform nothing if it is false

What happens??:
if(condition) state 1; state 2;

Write as follows:
if(condition) {

state 1;
state 2;

}

Basic of C: Representations of
conditions (1/2)

symbol meaning example meaning of example
== equal n == 2 n is equal to 2
!= not equal n != 0 n is not equal to 0
> greater than n > 3 n is greater than 3

>= g.t. or equal n >= 3 n is g.t. or equal to 3
< less than n < 0.01 n is less than 0.01

<= l.t. or equal n <= 0.01 n is l.t. or equal to 0.01
&& and 0 < n && n <= 10 n is greater than 0 and

less than or equal to 10
|| or n < 0 || 0 < n n is less than 0 or

greater than 0
! not !(n < 0.01) n is not less than 0.0121

Basic of C: Representations of
conditions (2/2)

• You cannot compare 3 or more items
– 0<x<5  0 < x && x < 5
– a==b==c  a == b && b == c

• Example: Check of leap year
– Dividable by 400, or
– Not dividable by 100 but dividable by 4

22

year%400==0 || (year%100!=0 && year%4==0)

Basic of C: Control statements
for loop – repeating (1/4)

• Grammar

• It runs as follows:
A) Execute eq. 1
B) If eq.2 is true, step C,

and step D if false
C) Perform loop body and

eq. 3, jump to B
D) Go to next statement

23

for(eq.1;eq.2;eq.3){
loop body

}

Eq. 2

Loop body Next
statement

true

false

Eq. 3

Eq. 1

At a glance, it seems to be complex,
but we have several standard patterns.

Basic of C: Control statements
for loop – repeating (2/4)

Example: Output the sum from 1 to n

24

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+i;

}
printf(“1+…+%d=%d”,n,sum);

In C,
you can write i++
instead of i=i+1, and

you can write
sum+=i instead of
sum=sum+i

★ You may write as System.Console.WriteLine (“1+…+”+n+”=“+sum) in C#

Basic of C: Control statements
for loop – repeating (3/4)

Example: Output the sum from 1 to n

25

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+i*i;

}

Basic of C: Control statements
for loop – repeating (4/4)

• Ex: Compute

• Why is this correct?
– Because;

26

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=2n-1;i=i+2){

sum=sum+i*i;
} i indicates 2j-1

Basic of C: Control statements
for loop – repeating (4/4) suppl.

• Ex: Compute

• Of course, you can do in this way.

27

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){

sum=sum+(2*i-1)*(2*i-1);
}

Basic of C: Control statements
while loop & do-while loop (1/2)

• Grammar

28

while(condition){
loop body

}

do{
loop body

}while(condition)

conditi
on

Loop body Next
statement

true

false

conditi
on

Loop body

Next statement

true

false

Basic of C: Control statements
while loop & do-while loop (2/2)

Ex: Compute GCD(a,b) of two integers a and b

29

int a,b,r;
a=/*some value*/;
b=/*some value*/;
do{

r = a % b;
a = b; b = r;

}while(r!=0);
printf(“G.C.D.=%d”,a);

This method (algorithm) is known as
“Euclidean mutual division method”,
which is known as the oldest algorithm.

a b r=a%b
1848 630 588
630 588 42
588 42 0
42 0 0

Ex: a=1848, b=630

Basic of C: Array (1/2)
• What is array?

Data structure that aligns many data in the
same type (int, float, etc.) sequential in
memory

• Ex: int data[3]
– 3 consecutive memory cells are

kept as name “data”, in which
each cell stores an integer.

30

…
…

…
…

data
0
1
2

int data[3];
data[0]=1;
data[2]=2;
data[1]=3;

1

2
3

Not only “values”
in recent language.

★ In C#, int[] data = new int[3];

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100]

31

int data[100];
int i,max;
/*data is initialized somehow*/
max=0;
for(i=0;i<100;i=i+1){
if(max<data[i]) max=data[i];

}
printf(“maximum data = %d”,max);

Q: Is this program correct?

Wrong!

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100]

32

int data[100];
int i,max;
/*data is initialized somehow*/
max=0;
for(i=0;i<100;i=i+1){
if(max<data[i]) max=data[i];

}
printf(“maximum data = %d”,max);

Q: Is this program correct?

Wrong!

When all data is
negative, it outputs 0 as
the maximum!

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100] – make it correct

33

int data[100];
int i,max;
/*data is initialized somehow*/
max=data[0];
for(i=1;i<100;i=i+1){

if(max<data[i]) max=data[i];
}
printf(“maximum data = %d”,max);

The value of max is
always in data

Small Exercise (1)

• What does the following function compute?
– Find the outputs of collatz(5) and collatz(7)

34

collatz(unsigned int n) {
print(n); // output n
if (n == 1) return;
if (n%2==0) collatz(n/2);
else collatz(3n+1);

}

Function calls itself
recursively with
different parameters

Small Exercise (2-1)
• Definition of ExOR + :

– 0 + 0=0, 0 + 1=1, 1 + 0=1, 1 + 1=0

• For integers in binary system, we apply ExOR
bitwise; for example,
– 1010 + 710 = 10102 + 1112 = 11012 = 1310

1. Compute the following
1. 810 + 310

2. 1510 + 710

35

“Exclusive OR”
operation

Small Exercise (2-2)
2. What does this function S(x,y) do?

36

S(int x, y) {
x=x + y;
y=x + y;
x=x + y;

}

Hint: Try computing
(x=8, y=3),

(x=15, y=7),
(x=1, y=128),
and so on…

	I111E Algorithms & Data Structures�1. Basic Programming
	Summary
	References
	Evaluations
	Schedule of Lectures
	Requirements
	What’s an algorithm?
	Models of “computation”
	Turing Machine Model
	RAM Model�(Random Access Memory)
	Programming Language
	Basic of C: Hello World
	Basic of C: Arithmetic operations
	Basic of C: Notes for arithmetic ops.
	Basic of C: Variable
	Basic of C: Assignment statement
	Basic of C: Declaration of variable
	Basic of C: Mathematical functions
	Basic of C: Control statements�if statement – conditional branch (1/2)
	Basic of C: Control statements�if statement – conditional branch (2/2)
	Basic of C: Representations of conditions (1/2)
	Basic of C: Representations of conditions (2/2)
	Basic of C: Control statements�for loop – repeating (1/4)
	Basic of C: Control statements�for loop – repeating (2/4)
	Basic of C: Control statements�for loop – repeating (3/4)
	Basic of C: Control statements�for loop – repeating (4/4)
	Basic of C: Control statements�for loop – repeating (4/4) suppl.
	Basic of C: Control statements �while loop & do-while loop (1/2)
	Basic of C: Control statements �while loop & do-while loop (2/2)
	Basic of C: Array (1/2)
	Basic of C: Array (2/2)�Get the maximum
	Basic of C: Array (2/2)�Get the maximum
	Basic of C: Array (2/2)�Get the maximum
	Small Exercise (1)
	Small Exercise (2-1)
	Small Exercise (2-2)

