
I111E Algorithms and Data Structures

2019, Term 2-1
Ryuhei Uehara and Giovanni Viglietta (Room I67, {uehara,johnny}@jaist.ac.jp)

Problem 1A (10pts):

(a) Starting from an empty Binary Search Tree, we perform the following insertions in order:
insert(1), insert(9), insert(2), insert(8), insert(3), insert(7), insert(4),
insert(6), insert(5). Draw the resulting Binary Search Tree.
(b) On the same Binary Search Tree of part (a), we perform the following operations in order:
delete(8), insert(8), delete(7). Draw the resulting Binary Search Tree.

Solution:

(a)

1

9

2

8

3

7

4

6

5

(b)

1

9

2

3

6

84

5

1



Problem 1B (10pts):

(a) Starting from an empty Binary Search Tree, we perform the following insertions in order:
insert(9), insert(1), insert(8), insert(2), insert(7), insert(3), insert(6),
insert(4), insert(5). Draw the resulting Binary Search Tree.
(b) On the same Binary Search Tree of part (a), we perform the following operations in order:
delete(8), insert(8), delete(7). Draw the resulting Binary Search Tree.

Solution:

(a)

9

1

8

2

7

3

6

4

5

(b)

5

9

1

2

6

83

4

2



Problem 2A (10pts):

(a) Starting from an empty heap, we insert the following numbers in order:
20, 3, 28, 22, 12, 8, 31, 15. Draw the resulting heap in its array representation.
(b) Starting from the heap of part (a), we remove the minimum element from the root twice. Draw
the resulting heap in its array representation.

Solution:

(a)

3 12 8 15 20 28 31 22

(b)

12 15 22 31 20 28

3



Problem 2B (10pts):

(a) Starting from an empty heap, we insert the following numbers in order:
19, 2, 27, 23, 11, 9, 32, 16. Draw the resulting heap in its array representation.
(b) Starting from the heap of part (a), we remove the minimum element from the root twice. Draw
the resulting heap in its array representation.

Solution:

(a)

2 11 9 16 19 27 32 23

(b)

11 16 23 32 19 27

4



Problem 3 (10pts): We learned how to deal with a heap after removing the minimum item from its
root. Prove that the process does not break the consistency of the heap.

Solution: The removal algorithm takes the last element x of the heap (which is found in a leaf) and
places it at the root. Then, x “slides down” the heap until it is larger than both its children nodes.
As x slides down, it is exchanged with some values, say a1, a2, . . . , ak, originally located in nodes
v1, v2, . . . , vk, respectively. We only need to prove that the heap’s fundamental property (i.e., that
the value in any node is smaller that the values in each of its children) remains true for these k
nodes, because all other nodes remain unchanged.

Let us prove by induction that the heap’s property is preserved on all the vi’s. Assume that, at
“time i”, i.e., when x reaches node vi, the property is true from node v1 to node vi−1. If x is
smaller than the values stored in both vi’s children nodes, then the algorithm terminates without
modifying the heap. In this case, the heap’s property is still true for nodes v1, . . . , vi−1 (because
nothing has changed), and it is also true for vi, by our assumption.

Otherwise, x is greater than at least one value stored in the children of vi. To complete the proof
by induction, we need to show that, at “time i + 1”, i.e., when x reaches node vi+1, the property
is true from node v1 to node vi. Let ai+1 and bi+1 be the values stored in the children of vi, with
ai+1 < bi+1. By assumption, we have ai+1 < x, and so the heap’s property is satisfied for vi at
time i+ 1. We still have to prove that the property remains satisfied from node v1 to node vi−1 at
time i + 1. This is also true from v1 to vi−2 by inductive hypothesis (because the values in these
nodes and their children did not change from time i to time i+ 1), but we still need to check it for
node vi−1. This node’s value remained unchanged (it is still ai), but one of its children changed
value from x to ai+1. To conclude the proof, we need to show that ai < ai+1: this is true because,
in the original heap (i.e., at time 0), ai was in vi, and ai+1 was in its child vi+1, implying that
ai < ai+1 by the consistency of the original heap.

ib

ia

+1ia +1ib

x iv

+1iv

ib

ia

+1ia

+1ibx

iv

+1iv

itime + 1itime

5



Problem 4 (20pts): Given the array a[0] ∼ a[n− 1] consisting of n real numbers, we want to compute
the function f(x) = a[0]+a[1]x+a[2]x2+ · · ·+a[n−1]xn−1. Consider the two following algorithms:

1. Following the definition, compute
a[0] + a[1]× x + a[2]× x× x + a[3]× x× x× x + · · ·+ a[n− 1]× x× · · · × x step by step.

2. Compute the function after the following modification:
a[0] + x× (a[1] + x× (a[2] + x× (a[3] + x× (a[4] + · · ·+ x× (a[n− 2] + x× a[n− 1])))))

Evaluate the number of summation and multiplication operations respectively as functions of n,
and discuss which of the two algorithms is better.

Solution: For (1), the summation operations are n− 1, and the multiplication operations are
n−1∑
i=0

i = n(n− 1)/2 = O(n2).

For (2), the summation operations are n− 1, and the multiplication operations are n− 1 = O(n).
Algorithm (2) is better, because it performs the same number of summations and asymptotically
fewer multiplications than (1).

6



Problem 5 (20pts): Two arrays of size n are given: A is sorted in increasing order, and B is sorted
in decreasing order. Give an efficient algorithm that determines if there is an index i such that
A[i] = B[i], and determine its running time.

Solution: If we compare A[i] and B[i], we can determine if the required index lies to the left or to the
right of i: if A[i] < B[i], then the left portion of the two arrays can be excluded, and vice versa.
This suggests that the binary search algorithm can be adapted to this problem. Here is a possible
C implementation:

int problem 5(int A[], int B[], int n) {
int left = 0;
int right = n - 1;
do {

int mid = (left + right) / 2;
if (A[mid] == B[mid]) return mid;
if (A[mid] > B[mid]) right = mid - 1;
else left = mid + 1;

} while (left <= right);
return -1;

}

The running time is the same as binary search: O(log n).

7



Problem 6A (20pts): Let (an)n≥1 be the following sequence of real numbers:

an =


1 if n = 1

0 if n = 2(
n

n−2 + an−1

)
· an−2 if n > 2

Describe an optimal algorithm that takes n as input and outputs an. What are the running time
and space complexity of your algorithm?

Solution: We can prove by induction that

an =

{
0 if n is even

n if n is odd

This is true for n = 1 and n = 2. Suppose now that n > 2, and let the inductive hypothesis hold
for all ai’s up to an−1. If n is even, then n− 1 is odd and n− 2 is even, and so an−1 = n− 1 and

an−2 = 0. Hence, an =
(

n
n−2 + n− 1

)
· 0 = 0, as desired. On the other hand, if n is odd, then

an−1 = 0 and an−2 = n− 2, and therefore an =
(

n
n−2 + 0

)
· (n− 2) = n. This concludes the proof.

So, to compute an, we only have to test n mod 2. Here is a C implementation of the algorithm:

int problem 6A(int n) {
if (n % 2 == 0) return 0;
else return n;

}

The running time and space complexity are constant, which is obviously optimal.

8



Problem 6B (20pts): Let (an)n≥1 be the following sequence of real numbers:

an =


0 if n = 1

2 if n = 2(
n

n−2 + an−1

)
· an−2 if n > 2

Describe an optimal algorithm that takes n as input and outputs an. What are the running time
and space complexity of your algorithm?

Solution: We can prove by induction that

an =

{
n if n is even

0 if n is odd

This is true for n = 1 and n = 2. Suppose now that n > 2, and let the inductive hypothesis hold
for all ai’s up to an−1. If n is even, then n − 1 is odd and n − 2 is even, and so an−1 = 0 and

an−2 = n − 2. Hence, an =
(

n
n−2 + 0

)
· (n − 2) = n, as desired. On the other hand, if n is odd,

then an−1 = n − 1 and an−2 = 0, and therefore an =
(

n
n−2 + n− 1

)
· 0 = 0. This concludes the

proof.

So, to compute an, we only have to test n mod 2. Here is a C implementation of the algorithm:

int problem 6B(int n) {
if (n % 2 == 0) return n;
else return 0;

}

The running time and space complexity are constant, which is obviously optimal.

9


