
I111E Algorithms and Data Structures
Final Examination—Solutions

2019, Term 2-1
Ryuhei Uehara and Giovanni Viglietta (Room I67, {uehara,johnny}@jaist.ac.jp)

Problem 1: Let a and b be arrays containing n and m real numbers, respectively. We would like to
count all the numbers that appear in both a and b. Analyze the computation time of each of the
following three methods (here, you can assume that you can sort n numbers in O(n log n) time):

(1) For each element in a, check if it appears in b step by step.

(2) After sorting a, check if each element in b appears in a by binary search.

(3) After sorting a and b, check the common elements appearing in both of them through the
merging process used in merge sort.

Solution:

(1) This algorithm takes the n elements of a and compares each of them with the m elements of b:
in total, it performs nm comparisons, and its running time is therefore O(nm).

(2) Sorting a takes O(n log n) time. Then, for each of the m elements of b, the algorithm performs
a binary search in a, which takes O(log n) time. The total running time is therefore O(n log n) +
O(m log n) = O((n + m) log n).

(3) Sorting a and b takes O(n log n) and O(m logm) time, respectively. The merging process used
in merge sort takes O(n + m) time. Hence, the total running time is

O(n log n) + O(m logm) + O(n + m) = O(n(log n + 1) + m(logm + 1) = O(n log n + m logm).

1

Problem 2: We are given a Binary Search Tree, and we want to print all the values stored in it in
increasing order. Give an asymptotically optimal algorithm to perform this task. What is the
running time of your algorithm?

Solution: Recall that the fundamental property of a BST is that, for each node, the left (respectively,
right) subtree contains only values that are smaller (respectively, larger) than the value stored in
the node itself. So, the idea is to start from the root and recursively print all the values in the
left subtree, then the value stored in the current node, and finally all the values stored in the right
subtree.

Here is a possible C implementation:

This procedure visits each node exactly once, and in each node it performs a constant number of
operations. Hence the running time is linear in the number of nodes, i.e., O(n). Since the algorithm
should at least print n values, and printing n values already takes O(n) time, our solution is clearly
optimal.

2

Problem 3: Let an array of n distinct integers a[0] ∼ a[n− 1] be given. A subsequence is any subset of
these numbers taken in order. An increasing subsequence is a subsequence where the numbers are
getting increasingly large. Give an efficient algorithm that finds the longest increasing subsequence
of the array.

(For example, the longest increasing subsequence of (4, 2, 7, 6, 3, 5, 8, 1, 9) is (2, 3, 5, 8, 9).)

Hint: Use dynamic programming to design an O(n2)-time algorithm.

Solution: We define L(i) as the subproblem of finding the length of the longest increasing subsequence
of a[] terminating with a[i].

We store the values of L(·) in an array length[]. We construct length[] from left to right:
to compute length[i], we scan a[] from a[1] to a[i − 1], looking for a number a[j] that is
smaller than a[i]. When we find it, we know that we can use a[i] to extend the longest increasing
subsequence terminating with a[j]. We look up length[j] to see how long this subsequence is
and, if it yields a subsequence of length greater than the value currently stored in length[i],
we update it. We also store the index j in pred[i], so that later we can reconstruct the longest
increasing subsequence terminating with a[i]. Throughout the entire process, we remember the
largest value contained in length[] in a variable max length and the corresponding index in
max index.

When we are finished constructing length[], we have the length of the longest increasing sub-
sequence in max length and the index of its last element in max index. To construct the
longest increasing subsequence, we retrieve its elements in reverse order by looking up a[] at index
max index and then going backwards following the indices stored in pred[].

Here is a possible C implementation, which also prints the longest increasing subsequence after
constructing it:

The running time is clearly quadratic, because the algorithm consists of two nested for loops that
repeat for O(n) steps each, followed by two consecutive for loops of length O(n).

3

Problem 4: We are using the Fermat test to determine if N = 65 is prime.

(a) Is a = 5 a good or a bad witness? Why?

(b) Is a = 64 a good or a bad witness? Why?

(c) Is a = 12 a good or a bad witness? Why?

Hint: To compute a modular exponential by hand, you do not necessarily have to perform all the
operations that a computer would, but you can use any “shortcut” that you come up with.

Solution: N = 65 is not prime, hence a is a good witness if a64 6≡ 1 (mod 65), and it is a bad witness
if a64 ≡ 1 (mod 65).

(a) Observe that gcd(5, 65) = 5. So, any positive power of 5 is still a multiple of 5 modulo 65. It
follows that 564 6≡ 1 (mod 65), and a = 5 is a good witness.

(b) We have 64 ≡ −1 (mod 65). So, 6464 ≡ (−1)64 ≡ ((−1)2)32 ≡ 132 ≡ 1 (mod 65), and therefore
a = 64 is a bad witness.

(c) We have 1264 ≡ ((122)2)16 ≡ (1442)16 ≡ (142)16 ≡ 19616 ≡ 116 ≡ 1 (mod 65), where we used
the fact that 144 ≡ 14 (mod 65) and 196 ≡ 1 (mod 65). We conclude that a = 12 is a bad witness.

4

Problem 5: Suppose that the RSA cryptosystem did not use a composite modulus N , but simply a
prime modulus p. Bob would have a public key (e, p), and Alice would encode her message x as
y = xe mod p. Bob would then retrieve x with his private key (d, p), by computing x = yd mod p.

(a) How should Bob choose e and d so that the encoding and decoding phases work as intended?

(b) Show that this cryptosystem is not secure: that is, Eve can devise an algorithm that, given e,
p, and xe mod p as input, efficiently computes x. Justify the correctness and analyze the running
time of such an algorithm.

Solution:

(a) Bob should choose e and d so that they are inverses modulo p − 1, i.e., ed ≡ 1 (mod p − 1).
In practice, this is done by picking any e relatively prime to p − 1, and then inverting it using
the extended Euclid algorithm in O(n3) time. This choice works because, in the decoding phase,
Bob computes (xe)d ≡ x (mod p), and therefore he is able to retrieve Alice’s original message x.
Indeed, the above congruence holds because

xed ≡ xk(p−1)+1 ≡ (xp−1)k · x ≡ 1k · x ≡ x (mod p),

where we applied Fermat’s little theorem: xp−1 ≡ 1 (mod p).

(b) Given Bob’s public key (e, p), Eve too can invert e modulo p by using the extended Euclid
algorithm in O(n3) time. This way, Eve can compute Bob’s private exponent d and use it to
decode Alice’s message (in the same way as Bob would) by modular exponentiation in O(n3) time.
Since Eve is able to break the code in polynomial time, the cryptosystem is not secure.

5

