Lesson 5. Data Structures (1):
Linked List and Binary Search Tree
I111E — Algorithms and Data Structures

Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnnyQjaist.ac.jp

JAIST — October 30, 2019

All material is available at
www. jaist.ac.jp/~uehara/couse/2019/1i111le

uehara@jaist.ac.jp
johnny@jaist.ac.jp
www.jaist.ac.jp/~uehara/couse/2019/i111e

Goals of today's lecture

@ Learn about Linked Lists
e Searching for data in a Linked List
e Inserting data in a Linked List

o Deleting data from a Linked List

@ Learn about Binary Search Trees

e Searching for data in a Binary Search Tree
o Inserting data in a Binary Search Tree

o Deleting data from a Binary Search Tree

Algorithms and data structures

@ Algorithm: how to solve a problem

o Data structure: how to organize data

e Format of the intermediate results of a computation

o Contributes to the efficiency of algorithms

o Examples: Array, Linked List, Stack, Queue, Tree, ...

Array

@ Data are organized in a sequence

@ Accessing any element takes constant time (RAM model)

o Other structures may be accessed only from specific points

(e.g., Linked Lists: accessing the ith element takes O(#) time)

@ Can be accessed in order of indices (i.e., sequentially)

o Other structures may lack this property

(e.g., Tree structures)

Linked List

In a Linked List, data are organized in nodes. Each node contains:
@ Some data,

@ A pointer to the next node.

Typically, Linked Lists are used to organize data in a chain:
@ The first node is the head, and is not pointed to by any node.
@ The last node is the tail, and points to NULL.

data » data »| data »| data »| data

head tail

Linked List

In a Linked List, data are organized in nodes. Each node contains:
@ Some data,

@ A pointer to the next node.

Typically, Linked Lists are used to organize data in a chain:
@ The first node is the head, and is not pointed to by any node.
@ The last node is the tail, and points to NULL.

data » data »| data »| data »| data

head tail

@ Other variants include Two-Way Linked Lists,
where each node also points to the previous node.

@ Linked Lists can also be used to represent Tree structures
(where each node points to its parent).

Linked List: implementation of a node

This is a C implementation of a (One-Way) Linked List node:

typedef struct list.node {
int value;
struct list_nodex next;
} list_node;

We can create a Linked List as follows:

list_node* head = malloc(sizeof(list_node));
list_node* middle = malloc (sizeof (list_node));
list_nodex tail = malloc(sizeof(list_node));
head -> value = 10;

head -> next = middle;

middle —-> value = 20;
middle -> next = tail;
tail -> value = 30;

tail -> next = NULL;

Searching a Linked List

To search a Linked List for z, we scan its nodes one by one,
starting from the head, and stopping when we find x
or the next pointer is NULL:

list_nodex list_search(list_node* head, int x) {
list_nodex node = head;

while (node != NULL) {
if (node —-> value == x) return node;
node = node -> next;

return NULL;

If there are n nodes in the Linked List, the search takes O(n) time.

Inserting data in a Linked List

To insert a new value x in a Linked List, we can store z in a

new node, and make it point to the head of the Linked List:

X —— | data » data » data » data

new head head

Inserting data in a Linked List

To insert a new value z in a Linked List, we can store = in a
new node, and make it point to the head of the Linked List:

X —— | data » data » data » data

new head head

list_nodex list_insert (list_node* head, int x) {
list_nodex node = malloc(sizeof (list_node));
node -> value = X;
node —-> next = head;
return node;

}

The insertion function takes constant time.

Inserting data in a Linked List

To insert a new value z in a Linked List, we can store = in a

new node, and make it point to the head of the Linked List:

X —— | data » data » data » data

new head head

list_nodex list_insert (list_node* head, int x) {

list_nodex node = malloc(sizeof (list_node));
node -> value = X;
node -> next = head;

return node;

}
The insertion function takes constant time.
Note: this insertion method does not keep the Linked List sorted.

To keep it sorted, we would have to scan it an insert every new
element at the right position: this variant takes O(n) time.

Deleting data from a Linked List

To delete a value x from a Linked List:
@ Search for the node containing z,

@ Delete it,

@ Make the previous node point to the next node.

data » data »| data

data

S N——

Deleting data from a Linked List

To delete a value x from a Linked List:
@ Search for the node containing z,
@ Delete it,

@ Make the previous node point to the next node.

data » data »| data | data

S N——

Special case:

@ If z is in the head node, the second node becomes the head.

X » data | data | data | data

head new head

Deleting data from a Linked List

This is an implementation of the deletion algorithm:

list_nodex list_delete(list_node* head, int x) {
list_node* previous = NULL;

list_node* current = head;

while (current != NULL && current —-> value != x)
previous = current;
current = current -> next;

}

if (current == NULL) return head;

if (previous == NULL) {
list_node* n = current —-> next;
free(current);
return n;

}

previous -> next = current -> next;
free (current) ;
return head;

}

The worst-case running time is O(n).

Arrays vs. Linked Lists

Arrays:
@ Every element is easy to access: O(1).

@ Inserting and deleting elements is complicated
(involves shifting and possibly re-allocating the entire Array).

e If the Array is sorted, binary search takes O(logn) time.

315|16(8|10{15|17|18|23|25
—>

Linked Lists:
@ To access the ith element, we have to reach it: O(3).
@ Inserting and deleting elements is easy.

@ Even if the Linked List is sorted, searching takes O(n) time.

Binary Search Tree

A Binary Search Tree is the natural data structure

on which to perform binary search:

The key property of a BST is that, for each node v,
@ |ts left subtree contains all nodes with lower value than v,

@ lts right subtree contains all nodes with greater value than v.

Binary Search Tree node

In our implementation of a BST node, we have a pointer to each
child of the node, and also a pointer to its parent.

typedef struct tree.node {
int value;
struct tree_nodex parent;
struct tree_nodex left;
struct tree nodex right;
} tree_node;

We can set up a BST as follows:

tree.node* root = malloc(sizeof (tree.node));
tree-nodex leafl malloc (sizeof (tree.node));
tree_.nodex leaf2 malloc (sizeof (tree.node));
root —-> value = 10;

root —-> parent = NULL;

root -> left = leafl;

root -> right = leaf2; root 10
leafl -> value = 4; |
leafl -> parent = root;
leafl -> left = NULL;
leafl -> right NULL;
leafl -> value 19;
leaf2 -> parent = root; leaf1 | 4 19 | leaf2
leaf2 -> left = NULL;
leaf2 -> right = NULL;

Searching a Binary Search Tree

Searching a BST is done like with a Linked List,
but we choose the left or right child of each node we visit

based on the value stored in the node:

treenodex tree_search(tree.nodex root, int x) {

tree_nodex node = root;

while (node != NULL) {
if (node -> value == x) return node;
if (node -> value > x) node = node —-> left;
else node = node -> right;

}

return NULL;

The running time of searching depends on the height of the BST:
o If the BST is balanced, searching takes O(logn) time.

o If the BST is not balanced, searching takes up to O(n) time.

Searching a Binary Search Tree

Searching a BST corresponds to doing binary search on an Array:

Each path in a BST is a sequence of comparisons in a sorted Array.
x=49

NN
[10]12[18|28|30|38]40{5)] 47|49 5367) 70|75 82|

Inserting data in a Binary Search Tree

To insert a value z in a BST:

@ Search for z in the BST: the search ends in a node v.
@ Create a new node and store zx in it,

@ Attach the new node as a left or right child of v.

Inserting data in a Binary Search Tree

This is an implementation of the insertion algorithm:

tree_nodex tree_insert (tree_node*x root, int x) {
tree_node*x previous = NULL;

tree_nodex current = root;
while (current != NULL) {
previous = current;
if (current -> value == x) return true;
if (current -> value > x) current = current -> left;
else current = current -> right;

}

tree_nodex node = malloc (sizeof (tree_node));
node -> value = x;

node —-> parent = previous;

node -> left = NULL;

node -> right = NULL;

if (previous == NULL) return node;
if (previous -> value > x) previous —-> left = node;
else previous -> right = node;

return root;

Deleting data from a Binary Search Tree

To delete a value z from a BST:

@ Search for x in the BST: the search ends in a node v.
o Case 1: If one of the two children of v is empty:
e Attach the other child of v to the parent of v,

o Delete v. /

Deleting data from a Binary Search Tree

e Case 2: If both children of v are non-empty:
e Find the node w with largest value in the left subtree of v,
° % the value of w into v,
e Remove w as in Case 1 (note: the right child of w is empty).

Deleting data from a Binary Search Tree

e Case 2: If both children of v are non-empty:
e Find the node w with largest value in the left subtree of v,
° % the value of w into v,
e Remove w as in Case 1 (note: the right child of w is empty).

Exercise: prove that the resulting structure is still a BST.

Deleting data from a Binary Search Tree

To implement the deletion algorithm, we use a helper function:

void transplant (tree_.nodex to, tree_nodex from) {
treenodex p = to —> parent;

if (from != NULL) from -> parent = p;

if (p == NULL) return;

if (p —> value > to -> value) p -> left = from;
else p —> right = from;

This function takes a subtree rooted at node from

and attaches it in place of node to.

We will use it to remove a node and attach its child to its parent.

Deleting data from a Binary Search Tree

This is an implementation of the deletion algorithm:

tree_nodex tree_delete (tree_nodex head, int x) {
tree_nodex v = tree_search (head, x);

if (v == NULL) return head;

if (v -> left != NULL && v —> right != NULL) {
tree_nodex w = v —-> left;
while (w -> right != NULL) w = w -> right;
transplant (w, w —> left);
v —> value = w —-> value;
free (w);
return head;

}

tree_nodex u;

if (v -> left == NULL) u = v —-> right;

else u = v —> left;
transplant (v, u);
tree.nodex p = v —> parent;
free (v);

if (p == NULL) return u;
return head;

Performance of Binary Search Trees

The performances of search, insertion, and deletion in a BST
are the same, and depend on how balanced the tree is:
@ If the BST is well balanced, they have the same performance
as binary search: O(logn) in the worst case.
o If the BST is very unbalanced, it looks like a Linked List,

and its performance is O(n) in the worst case.

Performance of Binary Search Trees

The performances of search, insertion, and deletion in a BST

are the same, and depend on how balanced the tree is:

@ If the BST is well balanced, they have the same performance

as binary search: O(logn) in the worst case.

o If the BST is very unbalanced, it looks like a Linked List,

and its performance is O(n) in the worst case.

The shape of a BST depends on the initial data

and on the order of insertion and deletions:

on average, we should expect a BST to remain fairly balanced.

However, there are also self-balancing versions of the BST,
whose insertion and deletion operations maintain it well balanced
(e.g., AVL trees, red-black trees, B-trees, ...).

