
Lesson 5. Data Structures (1):
Linked List and Binary Search Tree

I111E – Algorithms and Data Structures

Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

JAIST – October 30, 2019

All material is available at
www.jaist.ac.jp/˜uehara/couse/2019/i111e

uehara@jaist.ac.jp
johnny@jaist.ac.jp
www.jaist.ac.jp/~uehara/couse/2019/i111e

Goals of today’s lecture

Learn about Linked Lists

Searching for data in a Linked List

Inserting data in a Linked List

Deleting data from a Linked List

Learn about Binary Search Trees

Searching for data in a Binary Search Tree

Inserting data in a Binary Search Tree

Deleting data from a Binary Search Tree

Algorithms and data structures

Algorithm: how to solve a problem

Data structure: how to organize data

Format of the intermediate results of a computation

Contributes to the efficiency of algorithms

Examples: Array, Linked List, Stack, Queue, Tree, . . .

Array

Data are organized in a sequence

Accessing any element takes constant time (RAM model)

Other structures may be accessed only from specific points

(e.g., Linked Lists: accessing the ith element takes O(i) time)

Can be accessed in order of indices (i.e., sequentially)

Other structures may lack this property

(e.g., Tree structures)

3 5 6 8 10 15 17 18 23 25

Linked List

In a Linked List, data are organized in nodes. Each node contains:

Some data,

A pointer to the next node.

Typically, Linked Lists are used to organize data in a chain:

The first node is the head, and is not pointed to by any node.

The last node is the tail, and points to NULL.

data data data data data

head tail

Other variants include Two-Way Linked Lists,
where each node also points to the previous node.

Linked Lists can also be used to represent Tree structures
(where each node points to its parent).

Linked List

In a Linked List, data are organized in nodes. Each node contains:

Some data,

A pointer to the next node.

Typically, Linked Lists are used to organize data in a chain:

The first node is the head, and is not pointed to by any node.

The last node is the tail, and points to NULL.

data data data data data

head tail

Other variants include Two-Way Linked Lists,
where each node also points to the previous node.

Linked Lists can also be used to represent Tree structures
(where each node points to its parent).

Linked List: implementation of a node

This is a C implementation of a (One-Way) Linked List node:

typedef struct list node {
int value;
struct list node* next;

} list node;

We can create a Linked List as follows:

list node* head = malloc(sizeof(list node));
list node* middle = malloc(sizeof(list node));
list node* tail = malloc(sizeof(list node));
head -> value = 10;
head -> next = middle;
middle -> value = 20;
middle -> next = tail;
tail -> value = 30;
tail -> next = NULL;

Searching a Linked List

To search a Linked List for x, we scan its nodes one by one,

starting from the head, and stopping when we find x

or the next pointer is NULL:

list node* list search(list node* head, int x) {
list node* node = head;
while (node != NULL) {

if (node -> value == x) return node;
node = node -> next;

}
return NULL;

}

If there are n nodes in the Linked List, the search takes O(n) time.

Inserting data in a Linked List

To insert a new value x in a Linked List, we can store x in a

new node, and make it point to the head of the Linked List:

x data data data data

headnew head

list node* list insert(list node* head, int x) {
list node* node = malloc(sizeof(list node));
node -> value = x;
node -> next = head;
return node;

}

The insertion function takes constant time.

Note: this insertion method does not keep the Linked List sorted.

To keep it sorted, we would have to scan it an insert every new

element at the right position: this variant takes O(n) time.

Inserting data in a Linked List

To insert a new value x in a Linked List, we can store x in a

new node, and make it point to the head of the Linked List:

x data data data data

headnew head

list node* list insert(list node* head, int x) {
list node* node = malloc(sizeof(list node));
node -> value = x;
node -> next = head;
return node;

}

The insertion function takes constant time.

Note: this insertion method does not keep the Linked List sorted.

To keep it sorted, we would have to scan it an insert every new

element at the right position: this variant takes O(n) time.

Inserting data in a Linked List

To insert a new value x in a Linked List, we can store x in a

new node, and make it point to the head of the Linked List:

x data data data data

headnew head

list node* list insert(list node* head, int x) {
list node* node = malloc(sizeof(list node));
node -> value = x;
node -> next = head;
return node;

}

The insertion function takes constant time.

Note: this insertion method does not keep the Linked List sorted.

To keep it sorted, we would have to scan it an insert every new

element at the right position: this variant takes O(n) time.

Deleting data from a Linked List

To delete a value x from a Linked List:

Search for the node containing x,

Delete it,

Make the previous node point to the next node.

data data

x

data data

Special case:

If x is in the head node, the second node becomes the head.

x data data data data

head new head

Deleting data from a Linked List

To delete a value x from a Linked List:

Search for the node containing x,

Delete it,

Make the previous node point to the next node.

data data

x

data data

Special case:

If x is in the head node, the second node becomes the head.

x data data data data

head new head

Deleting data from a Linked List

This is an implementation of the deletion algorithm:

list node* list delete(list node* head, int x) {
list node* previous = NULL;
list node* current = head;
while (current != NULL && current -> value != x) {

previous = current;
current = current -> next;

}
if (current == NULL) return head;
if (previous == NULL) {

list node* n = current -> next;
free(current);
return n;

}
previous -> next = current -> next;
free(current);
return head;

}

The worst-case running time is O(n).

Arrays vs. Linked Lists

Arrays:

Every element is easy to access: O(1).

Inserting and deleting elements is complicated
(involves shifting and possibly re-allocating the entire Array).

If the Array is sorted, binary search takes O(log n) time.

3 5 6 8 10 15 17 18 23 25

13

Linked Lists:

To access the ith element, we have to reach it: O(i).

Inserting and deleting elements is easy.

Even if the Linked List is sorted, searching takes O(n) time.

Binary Search Tree

A Binary Search Tree is the natural data structure

on which to perform binary search:

45

28 67

12 38 49 75

10 18 30 40 47 53 70 82

The key property of a BST is that, for each node v,

Its left subtree contains all nodes with lower value than v,

Its right subtree contains all nodes with greater value than v.

Binary Search Tree node

In our implementation of a BST node, we have a pointer to each
child of the node, and also a pointer to its parent.

typedef struct tree node {
int value;
struct tree node* parent;
struct tree node* left;
struct tree node* right;

} tree node;

We can set up a BST as follows:

tree node* root = malloc(sizeof(tree node));
tree node* leaf1 = malloc(sizeof(tree node));
tree node* leaf2 = malloc(sizeof(tree node));
root -> value = 10;
root -> parent = NULL;
root -> left = leaf1;
root -> right = leaf2;
leaf1 -> value = 4;
leaf1 -> parent = root;
leaf1 -> left = NULL;
leaf1 -> right = NULL;
leaf1 -> value = 19;
leaf2 -> parent = root;
leaf2 -> left = NULL;
leaf2 -> right = NULL;

10

4 19

root

leaf1 leaf2

Searching a Binary Search Tree

Searching a BST is done like with a Linked List,

but we choose the left or right child of each node we visit

based on the value stored in the node:

tree node* tree search(tree node* root, int x) {
tree node* node = root;
while (node != NULL) {

if (node -> value == x) return node;
if (node -> value > x) node = node -> left;
else node = node -> right;

}
return NULL;

}

The running time of searching depends on the height of the BST:

If the BST is balanced, searching takes O(log n) time.

If the BST is not balanced, searching takes up to O(n) time.

Searching a Binary Search Tree

Searching a BST corresponds to doing binary search on an Array:

Each path in a BST is a sequence of comparisons in a sorted Array.

10 12 18 28 30 38 40 45 47 49 53 67 70 75 82

x = 49

45

28 67

12 38 49 75

10 18 30 40 47 53 70 82

Inserting data in a Binary Search Tree

To insert a value x in a BST:

Search for x in the BST: the search ends in a node v.

Create a new node and store x in it,

Attach the new node as a left or right child of v.

25

12 29

7 20 42

3 9 15

17

35

3732

34

 = 34

v

x

Inserting data in a Binary Search Tree

This is an implementation of the insertion algorithm:

tree node* tree insert(tree node* root, int x) {
tree node* previous = NULL;
tree node* current = root;
while (current != NULL) {

previous = current;
if (current -> value == x) return true;
if (current -> value > x) current = current -> left;
else current = current -> right;

}
tree node* node = malloc(sizeof(tree node));
node -> value = x;
node -> parent = previous;
node -> left = NULL;
node -> right = NULL;
if (previous == NULL) return node;
if (previous -> value > x) previous -> left = node;
else previous -> right = node;
return root;

}

Deleting data from a Binary Search Tree

To delete a value x from a BST:

Search for x in the BST: the search ends in a node v.

Case 1: If one of the two children of v is empty:

Attach the other child of v to the parent of v,

Delete v.

vx

Deleting data from a Binary Search Tree

Case 2: If both children of v are non-empty:

Find the node w with largest value in the left subtree of v,

Copy the value of w into v,

Remove w as in Case 1 (note: the right child of w is empty).

vx

y

T

w

u

v

T

u

y

Exercise: prove that the resulting structure is still a BST.

Deleting data from a Binary Search Tree

Case 2: If both children of v are non-empty:

Find the node w with largest value in the left subtree of v,

Copy the value of w into v,

Remove w as in Case 1 (note: the right child of w is empty).

vx

y

T

w

u

v

T

u

y

Exercise: prove that the resulting structure is still a BST.

Deleting data from a Binary Search Tree

To implement the deletion algorithm, we use a helper function:

void transplant(tree node* to, tree node* from) {
tree node* p = to -> parent;
if (from != NULL) from -> parent = p;
if (p == NULL) return;
if (p -> value > to -> value) p -> left = from;
else p -> right = from;

}

This function takes a subtree rooted at node from

and attaches it in place of node to.

We will use it to remove a node and attach its child to its parent.

Deleting data from a Binary Search Tree

This is an implementation of the deletion algorithm:

tree node* tree delete(tree node* head, int x) {
tree node* v = tree search(head, x);
if (v == NULL) return head;
if (v -> left != NULL && v -> right != NULL) {

tree node* w = v -> left;
while (w -> right != NULL) w = w -> right;
transplant(w, w -> left);
v -> value = w -> value;
free(w);
return head;

}
tree node* u;
if (v -> left == NULL) u = v -> right;
else u = v -> left;
transplant(v, u);
tree node* p = v -> parent;
free(v);
if (p == NULL) return u;
return head;

}

Performance of Binary Search Trees

The performances of search, insertion, and deletion in a BST

are the same, and depend on how balanced the tree is:

If the BST is well balanced, they have the same performance

as binary search: O(log n) in the worst case.

If the BST is very unbalanced, it looks like a Linked List,

and its performance is O(n) in the worst case.

The shape of a BST depends on the initial data

and on the order of insertion and deletions:

on average, we should expect a BST to remain fairly balanced.

However, there are also self-balancing versions of the BST,

whose insertion and deletion operations maintain it well balanced

(e.g., AVL trees, red-black trees, B-trees, . . .).

Performance of Binary Search Trees

The performances of search, insertion, and deletion in a BST

are the same, and depend on how balanced the tree is:

If the BST is well balanced, they have the same performance

as binary search: O(log n) in the worst case.

If the BST is very unbalanced, it looks like a Linked List,

and its performance is O(n) in the worst case.

The shape of a BST depends on the initial data

and on the order of insertion and deletions:

on average, we should expect a BST to remain fairly balanced.

However, there are also self-balancing versions of the BST,

whose insertion and deletion operations maintain it well balanced

(e.g., AVL trees, red-black trees, B-trees, . . .).

