111

- Algorithms & Data Structures

Answer to the second report

School of Information Science
Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

2019-11-28

All materials are available at
http://www.jaist.ac.jp/~uehara/couse/2019/illle

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

Problem 1 When we compare two strings, their ordering is defined as follows:
e,0,1,00,01,10,11,000,001,010,011, 100, ...,

where € represents the empty string of length 0. This is not the same as the “usual” ordering in
your English dictionary. Define the “length-preferred” lexicographical ordering and the “usual”
lexicographical ordering. Why might we want to use this length-preferred ordering rather than the
usual one?

Let Xx=XgX1""*X,.; and y=yyy; "Y1 be two strings to be
compared. We first observe that x=y if and only if n=m and
x.=y; tor all i=0,1,---, n-1. We here define & <0<1 for the sake
of notational convention.

Definition of “length-preferred” lex. ordering
1. When n#m, x<y if n<m or x>y if n>m.

2. When n=m, x<y it and only if x,<y. and x.=y, for some 0=i<n and
all0=i'<i.

Problem 1 When we compare two strings, their ordering is defined as follows:

e,0,1,00,01,10,11,000,001,010,011, 100,.. .,

where € represents the empty string of length 0. This is not the same as the “usual” ordering in
your English dictionary. Define the “length-preferred” lexicographical ordering and the “usual”

lexicographical ordering. Why might we want to use this length-preferred ordering rather than the
usual one?

Definition of “usual” lex. ordering

1. Inany case, x<y it and only if x.<y, and x.=y, for some 0 =i<n and
allo=si<i.

Why we use “length-preferred” in computer?
Enumerate all strings in “usual” lex. ordering:

e, 0,00, 000, 0000, 00000,000000, 0000000, ---
“1” has no finite index!! How inconvenient!!

Problem 2 In quick sort, there are cases where a bad choice of a pivot makes the algorithm run slower.
Give concrete examples of arrays and poorly chosen pivots that make quick sort have the worst
possible running time.

* A pivot does not work if it divides into two unbalanced arrays.

« Example:
e Pivot is “the first element in the array”
* Input is “an array in order”;

PN 2 s 5 s 13 |2 34 (55

In this case, quick sort runs in O(n?) time:---.

Problem 3 Let us consider the following shuflle problem, which is the reverse of sorting:
Input: An array al0],...,a[n —1].
Output: The array a[0],...,a[n — 1], where the items are randomly shuffled.

' IS, we W 1 : ; 'S Tay 1 In ¢ aw
That is, we want an algorithm that randomly re-orders an array of n items in such a way that each
possible ordering appears with uniform probability. Assume that we can use a function random(k)

that returns any integer ¢ with 0 < i < k with probability 1/k. Then give an| efficient algorithm
to solve the shuffle problem.

« Naive algorithm:

for i=0,1,2,---,n-1 do
= random(n-1);
output the r-th “not yet output items” in all;
mark the output item in step 3 by “output”;
end.

« How do we mark”? — use an extra array
« How can we find the r-th item in a[]? — use O(n) time.
In total, the running time is O(n?)

Problem 3 Let us consider the following shuflle problem, which is the reverse of sorting:
Input: An array al0],...,a[n —1].
Output: The array a [{}] ,aln — 1], where the items are randomly shuffled.

That is, we want an algorithm that randomly re-orders an array of n items in such a way that each
) Y Y Y
possible ordering appears with uniform probability. Assume that we can use a function random(k)

that returns any integer ¢ with 0 < i < k with probability 1/k. Then give an| efficient algorithm
to solve the shuffle problem.

« Smart algorithm (known as Fisher-Yates algorithm):

fori=0,1,2,--- .n-1 do

We used similar idea in

r= random(n-1); Bubble sort,
OUtpUt a[] Heap sort,
alr] = aln-i-11:

end.

« We always keep “not yet output items” in al0]---a[n-i-1]
 We break the array, but it is quite simple and linear time algorithm!

	I111E Algorithms & Data Structures��Answer to the second report
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6

