
Introduction to
Algorithms and Data Structures

Lesson 1: Foundation of Algorithms (1)
Basic Models

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

mailto:uehara@jaist.ac.jp

Summary
Introduction to Algorithms and Data Structures
• By Professor Ryuhei Uehara, JAIST
• Goal: Understanding of value of Algorithms

2

• An algorithm is a way/method for solving a problem.
• A data structure is a way/method for storing data in a computer.
• In general, for a problem, there are many combinations of algorithms

and data structures. We need to evaluate them according to there
efficiency, and choose the best one.

• However, the important point is that to master the way of thinking of
algorithm design.

• In this short course, we learn several basic and representative problems
and algorithms for them. We analyze their correctness and efficiency.

References

• Textbook
– “Introduction to Algorithms, 3rd ed.”

Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, Clifford Stein,
2010, MIT Press.

– “First Course in Algorithms through
Puzzles,” Ryuhei Uehara, in printing,
Springer, 2019.

3

In Printing?

Requirements

• No special knowledge is required, but…
– It is better to have some experience of

programming
…in any programming language
• C, C++, Java, C#, Ruby, Python, Scheme, Haskell, …

– Algorithm itself is independent from any
programming language.

• I will use so-called “pseudo-code” to describe high-level
idea of an algorithm.

4

What algorithm is…

• What “solving a problem” means;
– We can obtain a correct answer for any input
– It can be obtained with reasonable costs;

• Computation is done in a polynomial time of the length of an input
• in a polynomial space (=memory) of the length of an input

• A problem is “unsolvable” if
– it takes so long time for some inputs,
– it takes so much memories for some inputs, or
– (we cannot make any program for the problem)

5

An abstract description of method for
solving a problem using a computer.

Model of Computing

• Description/efficiency of an algorithm are different
depending on a model of computation.
– What “basic operations” are?
– What kind of data in memory?

• Natural numbers, real numbers (with infinite accuracy?), images,
music data…?

• There are some standard models of computing
– Turing machine: The mathematical model by Alan Turing.

Base of all arguments of computation.
– RAM model: a standard model when we consider

algorithms.
6

How does “computer” work?
What is a “computation”?

Turing machine model

• Quite simple mathematical/theoretical model.
• Turing prove that a Turing machine is “universal”, which means that

every computable function can be computed by a Turing machine.
• Turing machine is tooooo simple to do programming in a real world

– Few basic operations like +, -, *, /, and so on…
– It is not good for discussion of “algorithms”

7

Finite control

Motor
Read/write

head
Memory tape

RAM Model
(Random Access Memory)

• It consists Memory and CPU (Central Processing Unit)
– We do not mind Input/Output

• It is essentially the same as your computer
• CPU can access any address randomly (not sequentially) in a unit cycle
• Programming language C is a system that show you this structure

implicitly (like arrays and pointers)
8

In your computer;
Address bits ≒ Data bits = k
The number of words ≦ 2k

Address Data

Finite control

Program counter: PC
Some registers

word

Programming Language

• Compiler translates any “readable” program (for
human) to an executable file in machine language
(for the CPU)

• E.g. Programming language C; It is okay if you
know…
1. variable
2. array
3. pointer
4. control statement (e.g., if, while)
5. recursive call

9

Basic of C: Hello World

• Display “Hello World” on screen

10

#include <stdio.h> /* for printf*/

main(){
printf(“Hello World”);

}

Semi-colon at
the end of a
statementstatement

“Algorithms” do not depend on programming language,
but we need some agreement in this class.

Basic of C: Mathematics

• Mathematical operations: +, -, *, /

– We do not mind if they are integers (int, etc.) or real
numbers (float, double, etc.) in this class

11

Equation meaning
3+4 Add 3 and 4
3-1 Subtract 1 from 3
3*3 Multiply 3 and 3
4/2 Divide 4 by 2

Note: For C beginner

• integer/integer is an integer
– Ex: 1/3 is 0, and 1.0/3 is 0.3333…

• You can use () for control of the order of
operations
– You cannot use {} and [] in mathematical formula
– Ex: {(3+4)*3+4}*6 is not valid. You have to

write ((3+4)*3+4)*6
• No power operations (you have some library

of functions to compute it)

12

Basic of C: Variable

• Variable: It is a memory cell, that indicates the “place”
to memory a result of computation

• Rules for naming
– Start with alphabet (UPPER, lower letters, and _)
– From the second letter, you can use alphabets and

numbers
• Not any other

– Upper and lower letters are different
• FF, ff, fF, and Ff are all different names

– Not reserved words in C (e.g., main, include, return)

– Good: x, orz, T_T, IE9, projectX, ff4, y2k, JAIST
– Bad: 7th, uehara@jaist, ac.jp, tel#

13

Basic of C: Assignment statement
• a=5

– Store the value 5 to the place named by a in memory
• a=b+5

– Store value of “value stored at the place named by b (or
value of the variable b) plus 5” to the place named by a

• a=a+1

– Store value of “the value of variable a plus 1” to the
place named by a 14

a
Memory cell

5

…
a
b 3

8 (The value of b)＋5

a 8
9

(value of variable a)＋1 = 8+1

“=“ is not “equal” in the
sense of mathematics

Basic of C: declaration of variable

• You have to declare variables beforehand (in C
language)

15

main(){
int a,b;
a = 5; b = 3;
printf(“a+b=%d”,a+b);

}

main(){
a = 5;
printf(“%d”,a);

}

Good It is not good!Variables a and
b in integer

Bad

Note: Recent language (like python) does not require
to declare beforehand.

Basic of C: Mathematical functions

• Source code: include the following header file
#include <math.h>

• Compile: Option -lm is required
– gcc main.c –lm

16

Square
root

Power

Logarithm

Logarithm

Exponential

function Math．symbol type Parameter
type

Basic of C: Control statements
if statement – conditional branch

• Grammar

– Ex: Output EVEN if n is even, and ODD if it is odd.

17

if (condition) state 1;
else state 2;

conditi
on

state 1 state 2

next statement

true

fause

If condition is true, perform
statement 1, and perform
statement 2 if it is false

if(n%2==0) printf(“EVEN”);
else printf(“ODD”);

Basic of C: Representations of
conditions (1/2)

symbol meaning example meaning of example
== equal n == 2 n is equal to 2
!= not equal n != 0 n is not equal to 0
> greater than n > 3 n is greater than 3

>= g.t. or equal n >= 3 n is g.t. or equal to 3
< less than n < 0.01 n is less than 0.01

<= l.t. or equal n <= 0.01 n is l.t. or equal to 0.01
&& and 0 < n && n <= 10 n is greater than 0 and

less than or equal to 10
|| or n < 0 || 0 < n n is less than 0 or

greater than 0
! not !(n < 0.01) n is not less than 0.0118

Basic of C: Representations of
conditions (2/2)

• You cannot compare 3 or more items
– 0<x<5  0 < x && x < 5
– a==b==c  a == b && b == c

• Example: Check of the leap year
– Dividable by 400, or
– Not dividable by 100 but dividable by 4

19

year%400==0 || (year%100!=0 && year%4==0)

Basic of C: Control statements
for loop – repeating (1/4)

• Grammar

• It runs as follows:
A) Execute eq. 1
B) If eq.2 is true, step C,

and step D if false
C) Perform loop body and

eq. 3, jump to B
D) Go to next statement

20

for(eq.1;eq.2;eq.3){
loop body

}

Eq. 2

Loop body Next
statement

true

false

Eq. 3

Eq. 1

Basic of C: Control statements
for loop – repeating (2/4)

Example: Output the sum between 1 to n

21

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+i;

}
printf(“1+…+%d=%d”,n,sum);

Basic of C: Control statements
for loop – repeating (3/4)

Example: Output the sum between 1 to n

22

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+i*i;

}

Basic of C: Control statements
for loop – repeating (4/4)

• Ex: Compute

• Why is this correct?
– Because;

23

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=2n-1;i=i+2){

sum=sum+i*i;
} i indicates 2j-1

Basic of C: Control statements
while loop & do-while loop (1/2)

• Grammar

24

while(condition){
loop body

}

do{
loop body

}while(condition)

conditi
on

Loop body Next
statement

true

false

conditi
on

Loop body

Next statement

true

false

Basic of C: Control statements
while loop & do-while loop (2/2)

Ex: Compute GCD(a,b) of two integers a and b

25

int a,b,r;
a=/*some value*/;
b=/*some value*/;
do{

r = a % b;
a = b; b = r;

}while(r!=0);
printf(“G.C.D.=%d”,a);

This method (algorithm) is known as
“Euclidean mutual division method”

a b r=a%b
1848 630 588
630 588 42
588 42 0
42 0 0

Ex: a=1848, b=630

Basic of C: Array (1/2)
• What is array?

Data structure that aligns many data in the
same type (int, float, etc.) sequential in
memory

• Ex: int data[3]
– 3 consecutive memory cells are

kept as name “data”, in which
each cell stores an integer.

26

…
…

…
…

data
0
1
2

int data[3];
data[0]=1;
data[2]=2;
data[1]=3;

1

2
3

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100]

27

int data[100];
int i,max;
/*data is initialized somehow*/
max=0;
for(i=0;i<100;i=i+1){
if(max<data[i]) max=data[i];

}
printf(“maximum data = %d”,max);

Q: Is this program correct?

Wrong!

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100]

28

int data[100];
int i,max;
/*data is initialized somehow*/
max=0;
for(i=0;i<100;i=i+1){
if(max<data[i]) max=data[i];

}
printf(“maximum data = %d”,max);

Q: Is this program correct?

Wrong!

When all data is
negative, it outputs 0 as
the maximum!

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100] – make it correct

29

int data[100];
int i,max;
/*data is initialized somehow*/
max=data[0];
for(i=1;i<100;i=i+1){

if(max<data[i]) max=data[i];
}
printf(“maximum data = %d”,max);

The value of max is
always in data

Report Problem 1.
• Definition of ExOR + :

– 0 + 0=0, 0 + 1=1, 1 + 0=1, 1 + 1=0

• For integers in binary system, we apply ExOR
bitwise; for example,
– 1010 + 710 = 10102 + 1112 = 11012 = 1310

1. Compute the following
1. 810 + 310

2. 1510 + 710

30

“Exclusive OR”
operation

Report Problem 1.
2. What does this function S(x,y) do?

• Write your student ID, name, and answer,
(and any comment is welcome ) in one
sheet of paper of A4 size, and submit it
tomorrow, 13:00.

31

S(int x, y) {
x=x + y;
y=x + y;
x=x + y;

}

Hint: Try to compute
(x=8, y=3),

(x=15, y=7),
(x=1, y=128),
and so on…

	Introduction to �Algorithms and Data Structures��Lesson 1: Foundation of Algorithms (1)�Basic Models
	Summary
	References
	Requirements
	What algorithm is…
	Model of Computing
	Turing machine model
	RAM Model�(Random Access Memory)
	Programming Language
	Basic of C: Hello World
	Basic of C: Mathematics
	Note: For C beginner
	Basic of C: Variable
	Basic of C: Assignment statement
	Basic of C: declaration of variable
	Basic of C: Mathematical functions
	Basic of C: Control statements�if statement – conditional branch
	Basic of C: Representations of conditions (1/2)
	Basic of C: Representations of conditions (2/2)
	Basic of C: Control statements�for loop – repeating (1/4)
	Basic of C: Control statements�for loop – repeating (2/4)
	Basic of C: Control statements�for loop – repeating (3/4)
	Basic of C: Control statements�for loop – repeating (4/4)
	Basic of C: Control statements �while loop & do-while loop (1/2)
	Basic of C: Control statements �while loop & do-while loop (2/2)
	Basic of C: Array (1/2)
	Basic of C: Array (2/2)�Get the maximum
	Basic of C: Array (2/2)�Get the maximum
	Basic of C: Array (2/2)�Get the maximum
	Report Problem 1.
	Report Problem 1.

