Introduction to
Algorithms and Data Structures

Lesson 4: Searching (2)
Block search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

mailto:uehara@jaist.ac.jp

Search Problem

* Problem: Sis a given set of data. For any given
data x, determine efficiently if S contains x or
not.

* Efficiency: Estimate the time complexity by n =
|S|, the size of the set S
— In this problem, “checking every data in S” is

enough, and this gives us an upper bound O(n) in
the worst case.

proportional to n.”

Data structure 2
Data in the array in increasing order

* s[lef 3 | 912251293337 65]87

* This is something like dictionary and address
book...

Q: Do you use sequential search algorithm

when you check dictionary? I j

Algorithm 2: m-block method

“lidiea ofim=block method

(1) Check the biggest item in each block,
and find the block B, that can contain x

(2) Perform sequential search in B,

Algorithm 2: m-block method

“ldea ot m=bhloclk method

Simple implementation:
divide into the blocks of same size except the last one.

0 n/m 2n/m n-1

Block 0 Block1 Block?2 Block m-1

» Each block has length k, where k = 'n/m
* Block B; has items from s[jk] to s[(j+D)k-1]: B, = [jk, j+1)k-1] 5

Algorithm 2: m-block method

“ldea ot m=block method

(0) Divide the array into m blocks B, B, ..., B
piggest item in eac
and find the block B, that can contain x

m-1

while(j<=m-2)
if x<=s[(j+1)*k-1] then exit from loop
else j=j+1;

If the program exits from the loop, the variable j indicates
the index of the block, and j indicates the last one otherwise.

Algorithm 2: m-block method

“ldeatoffm=block method
(0) Divide the array into m blocks B, By, ..., B, ;

(2) Perform sequential search in B,

i=j*k; t = min{ (j+1)*k-1, n-1 };
while(1 < t)
if x=s[i] then exit from the loop;
else i=i+1; //next item in the block
if x == s[i] then return 1 and halt;
else return -1 and halt.

Example and time complexity

012345 6 7 8 91011121314151617
ss 346 79111415 24 26 27 29|30 32

x=20

« # of comparisons = # of blocks + length of block = m + n/m

 What the value of m that minimize m + n/m ?
— Let f(m) = m + n/m, and take the differential for m
— f'lm)=1-n/m?=0 > m=vVn
— When m = Vn, # of comparisons= vn + n/Vn =2 vn

* Time complexity: O(Vn)

Block search takes v1000000=1000 comparisons!!

Algorithm 3: Double m-block method

In the m-block method, we use sequential search in each block.

== \We can use m-block method again in the block!!

Recursive call: basic and strong idea

/ \

/

Idea of double m-block method

Divide search area into m blocks, and repeat the same
process for the block that contains x, and repeat again and
again up to the block has length at most some constant N

9

double—m—block—search(int left, int righRa s e
Length L = right — le

Length of the block

Recursive call

sequential search 1f the
interval 1s short enough

Example:
find 20 (x=20) for block size 3

012345 6 7 &8 9 1011121314151617
3467911141517 182023242627 29 30 32
012345 6 7 8 9 1011121314151617
3467 911141517 18|20 23(24 26 27 29 30 32
012345 6 7 8 91011121314151617
3467911141517 18|2023(24 2627 29 30 32

—p

Analysis of time complexity

* Length of search space

—
3]
—

SR

3| 3

* Let n, be the length after the i-th call

n

n
ny = ——‘ < — +1

m m

TN n 1
S 01 PP

m m m

i1
n 1 n
mt . mJ mt

Analysis of time complexity

* The length n, after the i-th recursive call:
n, = n/m+2
* How many recursive calls made?

n; < Lmin <= Lminzli—l—z —
m

* Each recursive call make at most m-1
comparisons, so the total number of

comparisons is g(m—mogmL i >
111111 —

, n
L2 logm, Lmin — 2

+ Lmin

* The time complexity is O(log n)

Analysis of time complexity:

The best value of m
n

]
O&m Lmin — 2
m — 1 n

e Tm,m)=(m-—1) - Lmin

L Lmin

— 1
log, m %2 Tomin — 2

 To make T(n,m) the minimum, smaller mis
better because m-1 grows faster than log, m
(which will be checked in the big-O notation).

* Therefore, m=2 is the optimal

OOO
We will have “binary search” A
14

	Introduction to �Algorithms and Data Structures��Lesson 4: Searching (2)� Block search
	Search Problem
	Data structure 2�Data in the array in increasing order
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Example and time complexity
	Algorithm 3: Double m-block method
	スライド番号 10
	Example: �find 20 (x=20) for block size 3
	Analysis of time complexity
	Analysis of time complexity
	Analysis of time complexity: �The best value of m

