Introduction to
Algorithms and Data Structures

Lesson 6: Foundation of Algorithms (3)
Big-O notation

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

mailto:uehara@jaist.ac.jp

Big-O notation

* Big-O notation (Bachmann-Landau notation)
— Big-O notation: O(f(n)) | |
— Big-Q notation: Q(f(n))
— O notation: O(f(n))

i ~ & -I

Paul Bachmann Edmund Landau
18371920 1877—1938

 We have three more, small-o notations, but
we don’t use in this lesson.

Asymptotical Complexity

* |t indicates the behavior of complexity when the
size n of input grows quite huge.

 We'd like to check how complexity grows
(independent to machine model and/or
programming techniques)=>»
— It is enough to consider main/major term
— Coefficients are not essential from this viewpoint

* Three types:
— Upper bound
— Lower bound
— Both of them

Big-O notation: O(f(n))
Upper bound of complexity
. O(f(n)) ={g(n) | dc¢ > 0,3no, Vn > no, g(n) < cf(n);

— There exist two positive constants € and Mo such that
g(n) <cf(n) for every L 2> Mo
— Sometimes g(n) = O(f(n)) is used as g(n) € O(f(n))
. Example of f(n): log, n, n*, 2™,
Cﬂn)
g(n)

O(logn)?

Big-Q notation: Q(f(n))
Lower bound of complexity
e Q(f(n)) ={g(n) | dc > 0,3ne, Vn > np, cf(n) < g(n)}

— There exist two positive constants ¢ and ng such
that cf(n) < g(n) for every n > n,

g(n)

cf(n)

N

©® notation: ©(f(n))

° @(f(n)) — {Q(Tl) | EICHCZ > O) ElTlo,\V/Tl Z no,
cif(n) < g(n) <caf(n)}

— There exist three positive constantscq, ¢, ng such
that c1f(n) < g(n) < c2f(n) for every n > nyg

C,f(n)

g(n)

cif(n)

Report Problem 2

1. Choose functions in O(n), O(2")
—0.1n, 5n1000 2 qn 2n+3

2. Prove 23n? + n+ 2018 € O(n?) dis)prove,

you need to

3. Disprove 23n3+n+2018 € 0O(n?) | icleliAis
definition

4. Prove O(log, n) = O(log,yn)

Supplements: exponential, polynomial,
and logarithm

1. A problem is solvable if there is an algorithm
that solves the problem.

2. A problem is tractable if there is an algorithm
that solves the problem in polynomial time of
the length of the input.

3. A problem is intractable if we have no
polynomial time algorithm.

	Introduction to �Algorithms and Data Structures��Lesson 6: Foundation of Algorithms (3)� Big-O notation
	Big-O notation
	Asymptotical Complexity
	Big-O notation: O(f(n))�Upper bound of complexity
	Big-Ω notation: Ω(f(n))�Lower bound of complexity
	Θ notation: Θ(f(n))
	Report Problem 2
	Supplements: exponential, polynomial, and logarithm

