
Introduction to
Algorithms and Data Structures

Lesson 8: Data Structure (2)
Operations on linked lists,

and Binary Search Tree
Professor Ryuhei Uehara,

School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara
1

mailto:uehara@jaist.ac.jp

Example of
Data structures × Algorithms

• Usually, we can choose some data structure, e.g.,
• array
• linked list
for the implementation of the same algorithm.

• Efficiency depends on “data structure” vs “basic
operations” you will use on the data.
• When we “add” and “remove” data, linked list is much

better than array, and tree structure is much better than
linked list (I’ll explain, say, at the last lesson?)

• We will show some simple examples

typedef struct{
double data;
struct list_t *next;

} list_t;
p = head;
while(p != NULL && p->data != x)

p = p->next;
return p;

Sequential search by linked list

• Find x in the linked list from the top of linked
list
– It contains x  address of the record
– It doesn’t contain x NULL

Is this correct?

Satisfied?

YES

YES

p==NULL or p->data == x it exits

Binary search method

2 5 6 19 33 54 67 72 78

• Search, divide into halves, and repeat to find

– Key issue: Divide at the center point.

2 5 6 19 54 67 72 78

2 5 78

Find 5 Less than 33

Less than 6

Found!

Find 78Greater than 33

Greater than 72

Found!

Binary search tree:
data structure of binary search

• When data size is fixed, we can compute the
central positions beforehand

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ｓ 10 12 18 28 30 38 40 45 47 49 53 67 70 75 82

7
45

3 11
28 67

1 5 9 13
12 38 49 75

0 2 4 6 8 10 12 14
10 18 30 40 47 53 70 82

7
45

3 11
28 67

1 5 9 13
12 38 49 75

0 2 4 6 8 10 12 14
10 18 30 40 47 53 70 82

Left subtree:
All element is less than 45

Right subtree:
All elements are greater than 45

Property of binary search tree

• In general, for a node n,
– All elements in right subtree are greater than (or equal

to) n
– All elements in left subtree are less than (or equal to) n

Each record has two
pointers to left child
and right child.

Search in binary search tree

BSTnode *root, *v;
x=/*some value*/;
v = root;
while(v){

if(v->data == x)
break;

if(v->data > x)
v = v->lson;

else
v = v->rson;

}
return v;

typedef struct{
int data;
struct BSTnode

*lson, *rson;
}BSTnode;

Left if small

Right if large

Consider: binary search tree
• On a binary search tree, it holds for each vertex v;

– data in v > each data in left subtree of v
– data in v < each data in right subtree of v

25

12 29

7 20 42

3 9 15

17

35

32 37

8

Search in binary search tree: case v=15

25

12 29

7 20 42

3 9 15

17

35

32 37

9

Search in binary search tree: case v=34

25

12 29

7 20 42

3 9 15

17

35

32 37

10

• Perform binary search from the root
• If it reach to the leaf, store data on it

insert(x,tree){
v  root(tree)；
while(v is not a leaf){

if(x <= data(v)) then
ｖ  left child of v;

else
ｖ  right child of v;

}
make a node v at the leaf;
data(v)  x;

}

Add a data to binary search tree

11

Add a data to binary search tree
Example: add x=34

25

12 29

7 20 42

3 9 15

17

35

32 37

12

Add a data to binary search tree
Example: add x=34

25

12 29

7 20 42

3 9 15

17

35

32 37

34

13

void insert(tree *p, int x){
if(p == NULL){

p = (tree*) malloc(sizeof(tree));
p->key = x;
p->lchild =NULL; p->rchild = NULL;

}else
if(p->key < x)

insert(p->rchild, x);
else

insert(p->lchild, x);
}

Add a data to binary search tree (cnt’d)

How to call: insert(root,x)
14

Remove a data to binary search tree :
find a vertex of data x, and remove it!

• Case analysis based on the vertex v that has
data x
– Case 0. v has two leaves;

• This is easy; just remove v!

– Case 1. v has one leaf

– Case 2. v has no leaves

x

A

B

15

Remove a data to binary search tree:
Case 1. v has one leaf

(1a) v is left child of parent p: update the left
child of p by the nonempty child of v

x

A

B

A
B

16

Remove a data to binary search tree:
Case 1. v has one leaf

(1b) v is right child of parent p: update the right
child of p by the nonempty child of v

x

A

B

A
B

17

Remove a data to binary search tree :
Case 2. v has no leaves

• Let u be the left child
of v.

• Find the vertex w that
has the maximum
value w in the subtree
rooted at u.
– Right child of w should

be a leaf
• Value y in w is copied

to v, and remove w.
– As same as case 1

x

A

y

y

A
18

Remove a data to binary search tree :
Remove x=25

25

12 29

7 20 42

3 9 15

17

35

32 37

19

Remove a data to binary search tree :
Remove x=25

20

12 29

7 20 42

3 9 15

17

35

32 37

20

Some comments

• The shape of binary search tree depends on
– Initial sequence of data
– Ordering of adding/removing data

• So, it may be a quite unbalanced tree if these
ordering is not good…
– If you can hope that it is “random”, the expected level

of tree is O(log n).
– If you may have quite unbalanced data, the level can

be Θ(n). (In this case, it is almost the same as a linked
list.)

	Introduction to �Algorithms and Data Structures��Lesson 8: Data Structure (2)� Operations on linked lists,�and Binary Search Tree
	スライド番号 2
	Sequential search by linked list
	Binary search method
	Binary search tree:�data structure of binary search
	Property of binary search tree
	Search in binary search tree
	Consider: binary search tree
	Search in binary search tree: case v=15
	Search in binary search tree: case v=34
	Add a data to binary search tree
	Add a data to binary search tree�Example: add x=34
	Add a data to binary search tree�Example: add x=34
	Add a data to binary search tree (cnt’d)
	Remove a data to binary search tree :�find a vertex of data x, and remove it!
	Remove a data to binary search tree:�Case 1. v has one leaf
	Remove a data to binary search tree:�Case 1. v has one leaf
	Remove a data to binary search tree :�Case 2. v has no leaves
	Remove a data to binary search tree :�Remove x=25
	Remove a data to binary search tree :�Remove x=25
	Some comments

