Introduction to
Algorithms and Data Structures

Lesson &: Data Structure (2)
Operations on linked lists,
and Binary Search Tree

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

mailto:uehara@jaist.ac.jp

Example of
Data structures X Algorithms

Usually, we can choose some data structure, e.g.,

* array

* linked list

for the implementation of the same algorithm.

Efficiency depends on “data structure” vs “basic

operations’” you will use on the data.

* When we “add” and “remove” data, linked list 1s much
better than array, and tree structure is much better than
linked list (I’1ll explain, say, at the last lesson?)

We will show some simple examples

Sequential search by linked list

* Find x in the linked list from the top of linked

ist

— |t contains x =» address of the record !

— It doesn’t contain x = NULL

typedef struct{ -
double data; Satisfied:
struct list t *next;

: . (T
b list_t; p==NULL or p->data == x it exits

p = head,;
while(p != NULL && p->data != x)

P = p->next; e
Is this correct?

return p;

Binary search method

* Search, divide into halves, and repeat to find

M Qreater than 33 RGNS

——
2 5 6 19 33/| 54 67 72 78

2 5 6 19 54 67 72 78

Ihm Greater than 72

— Key issue: Divide at the center point.

Binary search tree:

data structure of binary search

0 1 2 3 4 5 6 7 8 910111213 14
Sl 10 12 18 28 30 38 40 45 47 49 53 67 /10 75 82

]

3 m 11
i 5
m ®& q;i
ol RN ol Rl o Be

* When data size is fixed, we can compute the
central positions beforehand

Property of binary search tree

Left subtree:
All element isdess than 4

|ght subtree:
Allelements aré greater than 45

* |In general, for a node n,

— All elements in right subtree are greater than (or equal
to) n

— All elements in left subtree are less than (or equal to) n

Search in binary search tree

typedef struct{

BSTnode *root, *v; m‘,‘

x=/*some value*/; int data;
= root: struct BSTnode
while(v){ *1son, *Pson;\\\
if(v->data == x) }BSTnode;

break;
if(v->data > x)
= v->1son;

Left if |
o] <o eftif sma i ’

— -> *
Vo= Voorsons Right if large Each record has two
pointers to left child
and right child.

¥

return v;

Consider: binary search tree

* On a binary search tree, it holds for each vertex v;

— data in v > each data in left subtree of v

— data in v < each data in right subtree of v

Search in binary search tree: case v=15

Search in binary search tree: case v=34

Reach to leaf

l\llﬁ

Add a data to binary search tree
Perform binary search from the root
f it reach to the leaf, store data on it

insert(x,tree){
v & root(tree);
while(v is not a leaf){
if(x <= data(v)) then
v & left child of v;
else
v € right child of v;
}
make a node v at the leaf;
data(v) < x;

Add a data to binary search tree
Example: add x=34

Add a data to binary search tree
Example: add x=34

25

12 29
T~ S/
7 20 42
7N\ A N N
3 9 15 \
N A \17 32 37

Add a data to binary search tree (cnt’d)

void insert(tree *p, int x){
if(p == NULL){
p = (tree*) malloc(sizeof(tree));
p->key = Xx;
p->1lchild =NULL; p->rchild = NULL;
telse
if(p->key < x)
insert(p->rchild, x);
else
insert(p->1lchild, x);

¥

How to call: insert(root,x)

Remove a data to binary search tree :
find a vertex of data x, and remove it!

e Case analysis based on the vertex v that has

data x p,
— Case 0. v has two leaves; y \
* This is easy; just remove V! X
— Case 1. v has one leaf AN
B

— Case 2. v has no leaves

Remove a data to binary search tree:
Case 1. v has one leaf

(1a) v is left child of parent p: update the left

child of p by the nonempty child of v
p, -
p

N
BN — N

A A

Report 3. Is property of binary search tree OK?,

Remove a data to binary search tree:
Case 1. v has one leaf

(1b) v is right child of parent p: update the right
child of p by the nonempty child of v

p, n

Remove a data to binary search tree :
Case 2. v has no leaves

 Let u be the left child

of v ./ 4

* Find the vertex w that -
has the maximum u -~ V

value w in the subtree /™. /\\ / / '\

rooted at u.
— Right child of w should @ \
be a leaf) / ::> /
* Valueyin wis copied / \

to v, and remove w.
— As same as case 1

Report 3. Is this still binary’search tree? —:

Remove a data to binary search tree :
Remove x=25

Remove a data to binary search tree :
Remove x=25

—

12 29
7 20 42
SN N 5T
3 9 15
[\ I S /N

17 32 37

[~V) [\

Some comments

 The shape of binary search tree depends on
— Initial sequence of data
— Ordering of adding/removing data

* So, it may be a quite unbalanced tree if these
ordering is not good...
— If you can hope that it is “random”, the expected level
of tree is O(log n).

— If you may have quite unbalanced data, the level can
be O(n). (In this case, it is almost the same as a linked
list.)

	Introduction to �Algorithms and Data Structures��Lesson 8: Data Structure (2)� Operations on linked lists,�and Binary Search Tree
	スライド番号 2
	Sequential search by linked list
	Binary search method
	Binary search tree:�data structure of binary search
	Property of binary search tree
	Search in binary search tree
	Consider: binary search tree
	Search in binary search tree: case v=15
	Search in binary search tree: case v=34
	Add a data to binary search tree
	Add a data to binary search tree�Example: add x=34
	Add a data to binary search tree�Example: add x=34
	Add a data to binary search tree (cnt’d)
	Remove a data to binary search tree :�find a vertex of data x, and remove it!
	Remove a data to binary search tree:�Case 1. v has one leaf
	Remove a data to binary search tree:�Case 1. v has one leaf
	Remove a data to binary search tree :�Case 2. v has no leaves
	Remove a data to binary search tree :�Remove x=25
	Remove a data to binary search tree :�Remove x=25
	Some comments

