Introduction to
Algorithms and Data Structures

Lesson 9: Data structure (3)
Stack, Queue, and Heap

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

mailto:uehara@jaist.ac.jp

Representative data structure

e Stack: The last added item will be took the
first (LIFO: Last in, first out)

* Queue: The first added item will be took the
first (FIFO: first in, first out)

 Heap: The smallest item will be took from the
stored data

Stack

 The structure that the last data will be
popped first (LIFO: Last in, first out)

* Operations

— push: add new data into stack

stack

— pop: take the data from stack
* Pointer

— top: top element in the stack

(where the next item is put)
top

Implementation of stack by an array

e Store a data: push(x)

stack[top]=x;
top=top+1;

* Take the data: pop()

top=top-1;
return stack[top];

e What kind of errors?

— Overflow: push (x) when top == size(stack)
— Underflow: pop(x) when top ==

Implementation of stack by an array

int stack[MAXSIZE];
int top = 0©;
void push(int x){
if(top < MAXSIZE){
stack[top] = x; top = top + 1;
} else
printf("STACK overflow");

}
int pop(){
if(top > 0){
top = top - 1; return stack[top];
} else
printf("STACK underflow");

Implementation of stack by linked list

 Point: You don’t need to fix the size of stack

typedef struct{
int data; struct list t *next;
+list t;

list t* push(list t *top,int x){
list t *ptr;
ptr=(struct list t*) malloc(sizeof(list t));
ptr->data=x; ptr->next=top; return ptr;
}
list t* pop(list t *top){
list t *ptr; ptr=top->next; free(top); return ptr;

}

Queue

 The first data will be took first
(FIFO: first in, first out)

Array o1 2 3 4 MAXSITZE-1
NS L R —
pick head tail Store a data
the data

Data are stored in
from queue[head+1] to queue(tail]

Add a data into queue

X data
queue : Dl
}
head tail

void append(int x){
tail = tail + 1;
queue[tail] = x;

¥

Simple implementation of queue by array:
take a data

iData taken

} 1
head tail

queue

int get(){
head = head + 1;
return queue[head];

¥

Problem of simple implementation of queue:
Waste area...

* What happens when we int get(){

use queue as follows? head = head + 1;
return queue[head];
int queue[MAX SIZE]; }
inF heaq, tail; void append(int x){
void ma1n(){. tail = tail + 1;
head=0; tail=0; queue[tail] = x;

append(3); get();
append(4); get();
}

head

gepéend(3)
tail

Solution: Use array cyclic

[[- [|-

head tail head tail head i tail

tail head

void append(int x){
tail = (tail + 1) % MAXSIZE;
queue[tail] = x;

}

int get(){ neturnto U
head = (head + 1) % MAXSIZE,;
return queue[head];

¥

Problem of queue in cyclic array:
We cannot distinguish between (full) and (empty)

When it is full;
N P == F
tt append L
t h head==tai |
When it is empty;
I —— —
hT T1: get() head=tail

In both cases, we have head==tail.

Solution: We define (full) when we
have tail==head when append.

void append(int x){
tail = (tail + 1) % MAXSIZE;
queue[tail] = x;
if(tail == head) printf("Queue Overflow ");
}
int get(int x){
if(tail == head) printf("Queue is empty ");
else {
head = (head + 1) % MAXSIZE;
return queuel[head];

¥
¥

Implementation of queue by linked list

Insertion of a data: From tail of the list: pointer tail
Take a data: From top of the list: pointer head

head
tail
head —
%—» l >< > X
Take a data tail Insert a data

Exercise: Make program by yourself!

Heap

 Add/remove data
e Elements can be taken from minimum

(or maximum) in order

a. How can we implement?

Implement of heap (1):
Simple impleme*

m = 0;

An array heap[] and top, for(i=1; i<top; i++)
the number of data if(heap[i] < heap[m])
* Initialize: top = © m=ij;
* |nsert data: x = heap[m];

heap[top] = X; heap[m] = heap[top-1];

top = top + 1; top = top - 1;
* Take minimum one:

return Xx;
Find the minimum element
heap[m] in heap[] and
output. Then copy
heap[top-1] to 01 2 m tan
heap[m], and decrease top heap || | F |

by 1. Minimum element

Problem of simple implementation:
Slow for reading data

e Store: O(1)
heap[top++]=X

* Take: O(n)

m = 0;

for(i=1; i<top; i++)
if(heap[i] < heap[m])

m= 1;

X = heap[m];

heap[m] = heap[top-1];

top = top - 1;

return X;

Heap by binary tree

“level” 1s the
distance (# of edges)
from the root

root:node that has no parent
leaf : node that has no child

A tree is called a binary tree
if each node has at most 2 children

Property of binary tree for heap

1. Assign 1 to the root.
2. For anode of number i, assign 2 X i to the left child and assign

2 X i+1 to the right child: i

2 X | 2 X i+1

3. No nodes assigned by the number greater than n.
4. For each edge, parent stores data smaller than one in child.

The maximum level of heap: ceil(log, (n+1)=1)

Each node has a unique path from the root, and its length 1s O(log n).

Example of a heap by binary tree

1. Assign 1 to the root.
/.1\ 2. For a node of number i, assign
® > } 3 2 X i to the left child and assign
/ N\ \ 2 X i+1 to the right child.
/' ¢ @5@o ® 3. No nodes assigned by the
@ s 9 number greater than n.

4. For each edge, parent stores
data smaller than one in child.

We can use an array, instead of linked list!

ol a1 LisLial izl 1l 21l 22

Add a data to heap

(1) temporally, add data to node n+1 (n+15t element in array)
(2) traverse to the root step by step, and
if parent > child then swap parent and child

A

® 2
‘6 Q7

\

9\“10 /
9\"10

That is, from n+1%t node to the root, the data are in order. This
algorithm does not occur any problem with any other part of tree.

void pushHeap(int x){
int i, j;
if(++n >= MAXSIZE)
stop("Heap Overflow"):
else{
heap[n] = X; o O
i=n; j=i/2;
while(j>0 && x < heap[j]){
heap[i] = heap[j];
i=J; J=1i/2;
}
heap[i] = x; o () <:>
}
}

Heap: Take the minimum item

(1) Take the minimum data at the root
(2) Copy the last item (of number n) to the root
(3) Traverse from the root to a leaf as follows
For each pair of two children, choose the smaller one,
and exchange parent and child if child is smaller than parent.

.1\/’Minimum data
(E) /‘3
/ AN
®: /O:®s @7
@ s 9

/

Program for re
ite

int* deleteMin(int>—
int x, 1, j, t;
if(n == @) stop("
else{ c()
heap[1l]=heap[n--];
for(i=1;i*2<=n;i=7j){
J=1*2;
iqu+1<=n && hg’
if(heap|1]<=
else { (
t=heap[i]f?\—
}

/) } o@

return heap;

Time complexity of binary heap

* Let n be the size of heap
— Addition: O(log n)
—Removal: O(log n)

* Each operation runs in time
proportional to the depth of the heap
* The depth of heap is O(log n)

Report Problem 3

two problems

. In the procedure of a binary search tree, show
that those two procedures keep the assertion of

binary search tree.

. Explain why do addition/removal of data
to/from binary heap work. Especially, show the
procedures do not break consistency.

26

	Introduction to �Algorithms and Data Structures��Lesson 9: Data structure (3)� Stack, Queue, and Heap
	Representative data structure
	Stack
	Implementation of stack by an array
	Implementation of stack by an array
	Implementation of stack by linked list
	Queue
	配列によるqueueの単純な実装:�データの格納
	Simple implementation of queue by array:�take a data
	Problem of simple implementation of queue:�Waste area…
	Solution: Use array cyclic
	Problem of queue in cyclic array:�We cannot distinguish between (full) and (empty)
	Solution: We define (full) when we have tail==head when append.
	Implementation of queue by linked list
	Heap
	Implement of heap (1):�Simple implement by array
	Problem of simple implementation:�Slow for reading data
	Heap by binary tree
	Property of binary tree for heap
	Example of a heap by binary tree
	Add a data to heap
	Program for adding a data to heap
	Heap: Take the minimum item
	Program for removing the smallest item from heap
	Time complexity of binary heap
	Report Problem 3

