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HEAP SORT
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Heap sort

• Data structure heap
– Insertion of data: Θ(log n) time
– Take the maximum element: Θ(log n) time

• How to sort by heap
– Step 1: Put n elements into heap
– Step 2: Repeat to take the maximum element 

from heap, and copy it to the rightmost element
• Computational Complexity: 

– Both of steps 1 and 2  take Θ(n log n) time.
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65

(1)add 65

65

(2)add 12

12

65

(3)add 46

12 46

65

(4)add 97

12 46

97

97

65 46

12

97

65 46

12 56

(5)add 56

97

65 46

12 56

(6)add 33

33

… in the same way, we can add
data to heap one by one:

Example of heap sort @Step 1
Data = 65  12  46  97  56  33 75  53  21

1 2 3 4 5 6 7 8 9

97 65 75 53 56 33 46 12 21
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97

65 75

53 56 33 46

12 21

1

2 3

4 5 6 7

8 9

21

65 75

53 56 33 46

12

1

2 3

4 5 6 7

8

75

65 46

53 56 33 21

12

1

2 3

4 5 6 7

8

Take 
the maximum

Example of heap sort @Step 2

Fix heap

75 65 46 53 56 33 21 12

Copy to the 
rightmost
element

75 65 46 53 56 33 21 12 97



97

65 75

53 56 33 46

12 21

21

65 75

53 56 33 46

12 97

(1)delete max (97)
75

65 46

53 56 33 21

12 97

12

65 46

53 56 33 21

97

(2) delete max (75)

75

65

56 46

53 12 33 21

Example of heap sort @Step 2
array = ：

75 65 46 53 56 33 21 12 97

65 56 46 53 12 33 21 75 97

97 65 75 53 56 33 46 12 21
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(Bit) improvement of heap sort

65

12 46

97 56 33 75

53 21

1

2
3

4 5 6 7

8 9

65

12 46

97 56 33 75

53 21

2
3

4 5 6 7

8 9

Subtree 
rooted at i=4

(1) Store data (2) Exchange data in each parent/child
from bottom

Subtree 
rooted at i=3

75

33 46

3

6 7

• We can make step 1 to run in Θ(n) time
– Add all items into the array first
– From bottom to top, exchange the parent/child
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MERGE SORT

John von Neumann
1903−1957



• It repeats to merge two sorted lists into one 
(sorted) list

• First, it repeats to divide until all lists have length 1,
and next, it merges each two of them.

65  12  46  97  56  33  75  53  21  lists of length 1

12  65  46  97  33  56  53  75  21  lists of length 2

12  46  65  97  33  53  56  75  21  lists of length 4

12  33  46  53  56  65  75  97  21  lists of length 8

12  21  33  46  53  56  65  75  97  one sorted list

Merge sort



left            mid            right

Implementation of merge sort:
Typical recursive calls

• The interval that will be sorted: [left, right]
• Find center mid = (left + right)/2

• [left,right][left,mid], [mid+1,right]
• Perform merge sort for each of them, and 

merge these sorted lists into one sorted list.



MergeSort(int left, int right){
int mid;
if(interval [left,right] is short)

(sort by any other simple sort algorithm);
else{

mid = (left+right)/2;
MergeSort(left, mid);
MergeSort(mid+1, right);
Merge [left, mid] and [mid+1, right];

}
}

Outline of merge sort

We can merge two lists of length 
p and q in 𝑂𝑂 𝑝𝑝 + 𝑞𝑞 time.



Merge sort: the merge process

i=left; j=mid+1; k=left;
while(i<=mid && j<=right)

if(a[i] <= a[j]) {
b[k]=a[i]; k++; i++:

} else { 
b[k]=a[j]; k++; j++;

}
while(j<=right){ b[k]=a[j]; k++; j++; }
while(i<=mid){ b[k]=a[i]; k++; i++; }
for(i=left; i<=right; i++) a[i]=b[i];

Temporarily, it 
stores items in a[] to 
b[] to merge.

Write back b[] to a[]

𝑂𝑂 𝑝𝑝 + 𝑞𝑞
time

To merge [left, mid] and [mid+1, right]:



Merge sort: Time complexity
• T(n): Time for merge sort on n data

– T(n) = 2T(n/2) + “time to merge”
= 2T(n/2) + cn + d (c, d: some positive constant)

• To simplify, letting n = 2k for integer k, 



Merge sort: Space complexity
• It is easy to implement by using two arrays 

a[] and b[].
– Thus space complexity is Θ(n), or we need n

extra array for b[].
– It seems to be difficult to remove this “extra” 

space.
– On the other hand, we can omit “Write back b[] 

to a[]” (in the 2 previous slides) when we use a[] 
and b[] alternately.

Maybe this “extra” space is the reason why 
merge sort is not used so often…



65  12  46  97  56  33  75  53  21  Divide into monotone sequences

12  46  65  97  21  33  53  56  75  Merge neighbors

12  21  33  46  53  56  65  75  97  Sorted!

Monotone sequence merge sort

• Bit improved merge sort from the practical
viewpoint.

• It first divides input into monotone sequences 
and merge them. (Original merge sort does 
not check the input)

Example: For 65, 12, 46, 97, 56, 33, 75, 53, 21;



Monotone sequence merge sort:
Time complexity

• We can merge in O(p+q) time to merge two sequences 
of length p and q

• After merging, the number of sequences becomes in 
half.
– When the number of monotone sequences is h,

the number of recursion is log2 h times.
• One recursion takes O(n) time

→ O(n log h) time in total.

• When data is already sorted: h = 1 → O(n) time 
• The maximum number of monotone sequences is n/2

→ O(n log n) time in total.
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