Introduction to
Algorithms and Data Structures

Lecture 11: Sorting (2)
Heap sort and Merge sort

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

mailto:uehara@jaist.ac.jp

HEAP SORT

Heap sort

e Data structure heap

— Insertion of data: O(log n) time

— Take the maximum element: O(log n) time
* How to sort by heap

— Step 1: Put n elements into heap

— Step 2: Repeat to take the maximum element
from heap, and copy it to the rightmost element

* Computational Complexity:
— Both of steps 1 and 2 take O(n log n) time.

Example of heap sort @Step 1
Data=65 12 46 97 56 3375 53 21

(1)add 65 (2)add 12 (3)add 46 (4)add 97
(65, (57
@ @ ORG>
2
(S)add 5 (6add 3 ... in the same way, we can add
data to heap one by one:
@ “ @ 7 1213 1405 617 [8 19

@ ‘ @ @@ 97 65 75 53 56 33 46 12 21

Example of heap sort @Step 2

Y

4 5

Copy to the 0 @ @ @
rightmost @

element

7516546 |53 (5633|2112

Example of heap sort @Step 2

array =|97 (65|75 |53 |56 (33|46 12|21,
(1)delete max (97)
@ (21, (75
"E =
@0 ® HED® @O O
(12) @ @ @D

7516546 |53 (56 |33|21 |12

97

(2) delete max (75)

(12) (65,
® =5
53) 0@ @D (63 (DE) @D

QQ 6556|4653 |12 (33 (217597 6

8

(Bit) improvement of heap sort

 We can make step 1 to run in ©(n) time
— Add all items into the array first
— From bottom to top, exchange the parent/child

(1) Store data (2) Exchange data in each parent/child
from bottom
1 @ N3
(Qd EQAd 6 IS
N i N5 6 /N (3%

@

Jolalo & GG @
9 g / N9
@ @ Subtree @ @ Subtreed

rooted at i=4 rooted at i=3

John von Neumann
1903—-1957

MERGE SORT

Merge sort

* |t repeats to merge two sorted lists into one
(sorted) list

[e5l[12]k6Ip7]56l33] [Z5]53]21] lists of length 1
- 3 8 .
[12 65|26 97]B3 56]53 75]1]lists of length 2

.=

[12 46 65 97]33 53 56 75][21]lists of length 4

[12 33 46 53 56 65 75 97J21]lists of length 8

|12 21 33 46 53 56 65 75 97|one sorted list

* First, it repeats to divide until all lists have length 1,
and next, it merges each two of them.

Implementation of merge sort:
Typical recursive calls

The interval that will be sorted: [left, right]

Find center mid = (left + right)/2
Y

left mid right

[left,right] =2 [left,mid], [mid+1,right]

Perform merge sort for each of them, and
merge these sorted lists into one sorted list.

Outline of merge sort

We can merge two lists of length
pandginO(p + q) time.

Merge sort: the merge process

To merge [left, mid] and [mid+1, right]:

O(p +q)4
time

Temporarily, it
stores items in a[] to
b[] to merge.

Write back b[] to a[]

Merge sort: Time complexity

e T(n): Time for merge sort on n data

— T(n) =2T(n/2) + “time to merge”
=2T(n/2)+cn+d (c, d: some positive constant)

* To simplify, letting n = 2k for integer k,
T2%) =2T(2 ") +c2%+d
= 202T(2%)+ c2 T4+ d)+c2* +d
= 22T(2%2) 4+ 2c2% + (1 4+ 2)d
=22(2T(2%) 4+ 22 +d) +2c2% + (1 +2)d
= 23T(2%3) 4+ 3c2*+ (1+2+4)d

=2' T2 Y +ic2+(1+2+...211)d
=2T(2%) + ke2k 4+ (1+2+...2N)d
=—bn+cnlogn+ (n—1)d € O(nlogn)

Merge sort: Space complexity

* |tis easy to implement by using two arrays
al] and b[].

— Thus space complexity is ©(n), or we need n
extra array for b[].

— It seems to be difficult to remove this “extra”
space.

— On the other hand, we can omit “Write back b(]
to a[]” (in the 2 previous slides) when we use a[]
and b[] alternately.

AV N

merge sort is not used so often...

Monotone sequence merge sort

* Bit improved merge sort from the practical
viewpoint.

* |t first divides input into monotone sequences
and merge them. (Original merge sort does
not check the input)

Example: For 65, 12, 46, 97, 56, 33, 75, 53, 21;
[65 12]¢6 97]56 33][75 53 21] Divide into monotone sequences

[12 46 65 97|21 33 53 56 75 Merge neighbors

[12 21 33 46 53 56 65 75 97 Sorted!

Monotone sequence merge sort:
Time complexity

We can merge in O(p+g) time to merge two sequences
of length p and g

After merging, the number of sequences becomes in
half.

— When the number of monotone sequences is h,
the number of recursion is log, h times.

One recursion takes O(n) time
— O(n log h) time in total.

When data is already sorted: h =1 - O(n) time
The maximum number of monotone sequences is n/2
— O(n log n) time in total.

	Introduction to �Algorithms and Data Structures��Lecture 11: Sorting (2)�Heap sort and Merge sort
	Heap sort
	Heap sort
	Example of heap sort @Step 1�Data = 65 12 46 97 56 33 75 53 21
	Example of heap sort @Step 2
	Example of heap sort @Step 2� array = 　　　 ：
	(Bit) improvement of heap sort
	Merge sort
	Merge sort
	Implementation of merge sort:�Typical recursive calls
	Outline of merge sort
	Merge sort: the merge process
	Merge sort: Time complexity
	Merge sort: Space complexity
	Monotone sequence merge sort
	Monotone sequence merge sort:�Time complexity

