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Quick sort

• Main property: On average, the fastest sort!
• Outline of quick sort:

– Step 1: Choose an element x (which is called pivot)
– Step 2:  Move all elements ≦ x to left

Move all elements ≧ x to right

– Step 3: Sort left and right sequences independently
and recursively

• (When sequence is short enough, sort by any simple sorting)

≦x ≧x
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Quick sort: Example
Step 1. Choose an element x

• Sort the following array by quick sort:

• Choose x=56, for example;

65 12 46 97 56 33 75 53 21

65 12 46 97 56 33 75 53 21
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•
• Start from [l, r] = [0,n-1], move l and r,

Swap a[l] and a[r] when a[l] >= x && a[r] < x

65 12 46 97 56 33 75 53 21

≦x ≧x

21 12 46 97 56 33 75 53 65

21 12 46 53 56 33 75 97 65
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Quick sort: Example
Step 2. Move element w.r.t x:



Quick sort: Example
Step 3. Sort left and right sequences recursively
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21 12 46 53 33 56 75 97 65

Quick sort Quick sort

21 12 46 53 33

21 12 33 46 53

75 97 65

75 65 97

⋮ ⋮



qsort(int a[], int left, int right){
int i, j, x;
if(right <= left) return;
i = left; j = right; x = a[(i+j)/2];
while(i<=j){

while(a[i]<x) i=i+1;
while(a[j]>x) j=j-1;
if(i<=j){
swap(&a[i], &a[j]); i=i+1; j=j-1;

}
}
qsort(a, left, j); qsort(a, i, right);

}

Quick sort: Program
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Note: In MIT textbook, there is another implementation.



Report Problem 4

In page 2, we consider the following case;
• String data: lexicographical ordering

e.g., aaa, aab, aba, abb, baa, bab, bbc, bcb
For any two binary strings s=s[1]…s[n] and
t=t[1]…t[m], describe exact condition if and only if 
s<t (note that n≠m in general).

(Bonus; can you make a dictionary that has all 
binary strings in your lexicographical ordering, and 
any finite length word has finite index? How can 
you avoid the potential problem?)
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A part of final report

• For the qsort, construct a bad input that gives 
the worst case.
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Quick sort: Time complexity (1/3)
Worst case
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• When the pivot x is the maximum or minimum 
element, we divide

length n → length 1 + length n-1 
• This repeats until the longer one becomes 2

• The number of comparisons; 

Almost as same as the bubble sort…
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Analysis of QuickSort

– Sorting Problem
Input: An array a[n] of n data

Output:  The array a[n] such that
a[1]<a[2]<…<a[n] 

★To simplify, we assume that there are no pair i≠j with a[i]=a[j]

– In practical, QuickSort is said to be “the fastest sort”
• Representative algorithm based on divide-and-conquer
• If partition is well-done, it runs in O(n log n) time.
• If each partition is the worst case, it runs in O(n2) time.
…Can we analyze theoretically, and guarantee the running time?



Analysis of QuickSort
– Review of QuickSort

• Call qsort(a,1,n)
• If qsort(a, i, j) is called,

– (Randomly) choose a pivot a[m] 
– Divide a[] into “former” and “latter”  by a[m]. I.e., sort as 

a[i’]<a[m] for i≦ i’ < m, and
a[j’]>a[m] for m< j’< j.

– Return qsort(a, i, i’), a[m], qsort(a, j’, j) as the result

– Though they say that QuickSort is the fastest in a practical sense,,,
• When a[m] is always the center of a[i]..a[j], we have

T(n) ≦ 2T(n/2) + (c+1) n
and hence T(n) = O(n log n).

• When a[m] is always either a[i] or a[j], we have
T(n)≦T(1)+T(n-1)+(c+1)n

and hence T(n) = O(n2). What about 
average case?

[C.F.]
We can always find 
the center in O(j-i)

time.



Analysis of QuickSort
– They say that QuickSort is the fastest in a practical sense,,,

• Assumption: each item in a[i] ... a[j] is chosen uniformly at random.
– Thus the kth largest value is chosen as the pivot with probability

1/(j-i+1)

– Notation
» sk is the kth largest item in a[1]…a[n].
» Define indicator variable Xij as follows

– Running time of QuickSort
~ the number of comparisons=

[Theorem] An upper bound of the expected value of the 
running time of QuickSort is 2n H(n)~ 2n log n It runs fast 

since few 
overhead.

0
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Hn is the harmonic number and Hn=O(log n) .



Analysis of QuickSort

– The expected value of the running time of QuickSort=

– Define as “pij ： probability that si and sj are compared”,

Thus consider the value of pij

– When si and sj are compared??
1. One of them is chosen as the pivot, and
2. They are not yet separated by qsort up to there

⇔ Any element between si and sj are not yet chosen as a pivot

（Linearity of expectation value）1 1
[ ] [ ]

n n

ij ij
i j i i j i
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[Theorem] An upper bound of the expected value of the running time 
of QuickSort is 2n H(n)~ 2n log n



Analysis of QuickSort

• When si and sj are compared?
1. One of them is chosen as the pivot, and 
2. They are not yet separated by qsort up to there

⇔ Any element between si and sj is not yet chosen as a pivot
– The ordering of pivots in si, si+1, si+2, …, sj-1,sj is uniformly at random!
– Thus si or sj is the first pivot with probability

Therefore, the expected time of the running time of QuickSort
=
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[Theorem] An upper bound of the expected value of the running time 
of QuickSort is 2n H(n)~ 2n log n



COMPUTATIONAL COMPLEXITY OF 
THE SORTING PROBLEM



Sort on Comparison model

• Sort on comparison model: Sorting algorithms 
that only use the “ordering” of data
– It only uses the property of “a > b, a = b, or a < b”; 

in other words, the value of variable is not used.



• Upper bound: O(n log n)
There exist sort algorithms that run in time 
proportional to n log n (e.g., merge sort, heap 
sort, …).

• Lower bound: Ω(n log n)
For any comparison sort, there exists an input 
such that the algorithm runs in time 
proportional to n log n.
We consider the lower bound of comparison sorting.

Computational complexity of sort on 
comparison model



• Simple example; sort 3 data a, b, c:
First, compare (a,b), (b,c), or (c, a). Without loss of 
generality, we assume that (a,b) is compared; then 
the next pair is (b,c) or (c,a):

yes a<b

nob<c

a<ca<b<c

a<c≤b c≤a<b

yes

yes

no

no

yes a<b

noa<c

b<cc≤a<b

a<b<c a<c≤b

no yes

yes no

b<c? a<c?

Computational complexity of 
comparison sort: lower bound



When we build a decision tree such that “the longest path from 
root to a leaf is shortest,” that length of the longest path gives 
us a lower bound of sorting problem.

• What we know from sorting of {a, b, c}:
– For any input, we obtain the solution at most 3 

comparison operators.
– There are some input that we have to compare at 

least 3 comparison operations.
= maximum length of a path from root to a leaf is 3,

which gives us the lower bound.

Computational complexity of 
comparison sort: lower bound



Computational complexity of 
comparison sort: lower bound

The case when n data are sorted
– Let k be the length of the longest path in an 

optimal decision tree T. Then,
The number of leaves of T ≦ 2k

– Since all possible permutations of n items should 
appear as leaves，n! ≦ 2k

– By taking logarithm,



Non-comparison sort: Counting sort
• We need some assumption: 

data[i]∈{1,…,k} for 1≦i≦n, k∈O(n)
(For example, scores of many students)

• Using values of data, it sorts in Θ(n) time.



Counting sort
Input: data[i]∈{1,…,k} for 1≦i≦n, k∈O(n)
Idea: Decide the position of element x

– Count the number of element less than x
That number indicates the position of x

Example:
3 7 4 1 2 5

1 2 3 4 5 7

1 2 3 4 5 6 7
0 1 2 3 4 5 5

1 2 3 4 5 6 7
1 1 1 1 1 0 1



Counting sort

Q. When array contains many data of same values?
A. Use 3 arrays a[], b[], c[] as follows;

(a[]: input, b[]: sorted data, c: counter)
– c[a[i]] counts the number of data equal to a[i]

– For each j with 0≦j≦k,
let c’[j] := c[0] + … + c[j-1] + c[j], then 
c’[j] indicates the number of data whose value is less 
than j

– Copy a[i] to certain b[] according to the value of c’[]



CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[ a[j] ] = c[ a[j] ] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 downto 0
b[ c[a[j]]-1 ] = a[j]; 
c[a[j]] = c[a[j]] - 1;

}

Counting sort: program

Initialize counter c[]

Count the number
of the value in a[i]

Compute c’[] from c[] 
In an efficient way!

Copy a[] to b[]



Counting sort: Example
Sort integers (3,6,4,1,3,4,1,4)

• After (2);
c[]=(0,2,0,2,3,0,1)

• After (3);
c[]=(0,2,2,4,7,7,8)

CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[ a[j] ] = c[ a[j] ] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 to downto 0
b[ c[a[j]]-1 ] = a[j]; 
c[a[j]] = c[a[j]] - 1;

}

(2)

(3)a[7]=4 => b[ c[4]-1 ] = b[6], c[4]=6
a[6]=1 => b[ c[1]-1 ] = b[1], c[1]=1
a[5]=4 => b[ c[4]-1 ] = b[5], c[4]=5
a[4]=3 => b[ c[3]-1 ] = b[3], c[3]=3
a[3]=1 => b[ c[1]-1 ] = b[0], c[1]=0
a[2]=4 => b[ c[4]-1 ] = b[4], c[4]=4
a[1]=6 => b[ c[6]-1 ] = b[7], c[6]=7
a[0]=3 => b[ c[3]-1 ] = b[2], c[3]=2



Counting sort: Example
Sort integers (3,6,4,1,3,4,1,4)

• After (2);
c[]=(0,2,0,2,3,0,1)

• After (3);
c[]=(0,2,2,4,7,7,8)

CountingSort(a, b, k){
for i=0 to k

c[i] = 0;

for j=0 to n-1
c[ a[j] ] = c[ a[j] ] + 1;

for i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 to downto 0
b[ c[a[j]]-1 ] = a[j]; 
c[a[j]] = c[a[j]] - 1;

}

(2)

(3)a[7]=4 => b[ c[4]-1 ] = b[6], c[4]=6
a[6]=1 => b[ c[1]-1 ] = b[1], c[1]=1
a[5]=4 => b[ c[4]-1 ] = b[5], c[4]=5
a[4]=3 => b[ c[3]-1 ] = b[3], c[3]=3
a[3]=1 => b[ c[1]-1 ] = b[0], c[1]=0
a[2]=4 => b[ c[4]-1 ] = b[4], c[4]=4
a[1]=6 => b[ c[6]-1 ] = b[7], c[6]=7
a[0]=3 => b[ c[3]-1 ] = b[2], c[3]=2

Sort is said to be “stable” 
when two variables of the 
same value in order after 
sorting.
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