Introduction to
Algorithms and Data Structures

Lecture 14: Graph Algorithms (1)
Breadth-first search and Depth-first search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

mailto:uehara@jaist.ac.jp

Search in Graph

* How can we check all vertices in a graph °

systematically, I

and solve some problem? e
— e.g., Do you have a path from Ato D? \Q

 Two major (efficient) algorithms:

— Breadth First Search:A->B->C->D
it starts from a vertex v, and visit all (reachable)

vertices from the vertices closer to v.

— Depth First Search:A->B->D->C
it starts from a vertex v, and visit every reachable
vertex from the current vertex, and back to the last

vertex which has unvisited neighbor.

BFS (Breadth-First Search)

* For a graph G=(V,E) and any start point s€V, all
reachable vertices from s will be visited from s in
order of distance from s.

e QOutline of method: color all vertices by white,
gray, or black as follows;
— White: Unvisited vertex
— Gray: It is visited, but it has unvisited neighbors

— Black: It is already visited, and all neighbors are also
visited

— Search is completed when all vertices got black
— Color of each vertex is changed as white—>gray—>black

BFS (Breadth-First Search):
Program code

BFS(V,E,s){
for veVv do toWhite(v); endfor
toGray(s); Queue is the best data
Q={s}; structure for this purpose!

while(Q!={}){

u=pop(Q); // Q 2 Q’ where Q={u}uQ’
for ve{veVv|(v,u)€E}

if isWhite(v) then

toGray(v); push(Q,v);

endif
endfor
toBlack(u);

}
}

BFS (Breadth-First Search): Example

Q=i1}

u=lI,
visit 2
Q={2}
black 1

u=2,
visit 3,4,5

Q={3.4,5}
black 2

u=3,
visit null

Q=14,5}
black 3

1

N

2

u=4,
visit null

Q={5}
black 4

u=ys,
visit 6
Q=16}
black 5

u=>o,
visit null
Q={}
black 6

BFS:
] : BFS(V,E,s){
Time complexity for vev do

Consider from toWhite(v);

the viewpoints of vertices endfor

toGray(s);
and edges 0={s};

* Each vertex never gets white hil | —
again after initialization. W $=Sép%é)?})1
* Each vertex gets into Q and for ve{v,evl (v,u)€E}
gets out from Q at most once i g isWhite(\;) then
* Each edge is checked at most toGray (v);

once ush(0, V)
— when one endpoint vertex is P QV);

taken from Q and its neighbors endif
are checked along edges endfor

» =~ 0(lV] + |E]) }}toBlack(u);

Application of BFS:
Shortest path problem on graph

Definition of “distance”
— Start vertex v has distance O

— Except start vertex, each vertex u has distance d+1,
where d is the distance of parent of u.

 On BFS, modify that each gray vertex receives
its “distance” from black neighbor, then you
get (shortest) distance from v to it.

DFS (Depth-First Search)

* For a graph G=(V,E) and start point s€V, it
follows reachable vertices from s until it
reaches a vertex that has no unvisited
neighbor, and returns to the last vertex that

nas unvisited neighbors.
dfs(V, E, s) { | Program code is
visit(s) < relatively simple, and
for (s, w)€E do vertices are put into a
it notVisited(w) then | i3k when dfs makes a
} dfs(V, E, w) recursive call.

DES: Example

DFS(1)

DFS(2)

DFS(3)

DFS(5)

DFS(6)

DFS(6)

DFS(5)
DFS(3)
DFS(2)

DFS(4)

DFS(2)

Application of DFS:
Find connected components in a graph

* For a given (disconnected) graph G = (V, E),
divide it into connected graphs G, = (V,, E,), ...,
G.=(V, E).

— We will give a numbering array cn[] such that
VuveV, ueV, AveV, A iz = cnlu] # cn[v]

//G ~N ™
L
.. © ’
N\ 0 / Y,

Application of DFS:

Find connected components of a graph

cc(V,E,en){ //cn[|V]]
for VEV do
cn[v] = 0; /*initialize*/
endfor
k = 1;
for VEV do dfs(V,E,v,k,cn){
if cn[v]==0 then cn[v]=k;
dfs(V,E,v,k,cn); for UE{Ul(V,U)EE} do
k=k+1; if cn[u]==0 then
endif dfs(V,E,u,k,cn);
endfor endif

} endfor
}

BFS v.s. DFS on a graph

 Two major (efficient) algorithms:
— Breadth First Search:
It corresponds to “Queue”
— Depth First Search:
It corresponds to “Stack”

— Both algorithms are easy to implement to run in
O(|V|+]|E|) time. (In a sense, this time complexity
is optimal since you have to check all input data.)

— Depending on applications, we choose better
algorithm.

	Introduction to �Algorithms and Data Structures��Lecture 14: Graph Algorithms (1) Breadth-first search and Depth-first search
	Search in Graph
	BFS (Breadth-First Search)
	BFS (Breadth-First Search):�Program code
	BFS (Breadth-First Search): Example�
	BFS: �Time complexity
	Application of BFS:�Shortest path problem on graph
	DFS (Depth-First Search)
	DFS: Example
	Application of DFS:�Find connected components in a graph
	Application of DFS:�Find connected components of a graph
	BFS v.s. DFS on a graph

