
Introduction to 
Algorithms and Data Structures

Lecture 15: Data Structure (5)
Dynamic Search Tree and Balancing 

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

mailto:uehara@jaist.ac.jp


Dynamic search and data structure

• Sometimes, we would like to search in 
dynamic data, i.e., we add/remove data in the 
data set.

• Example: Document management in 
university
– New students: add to list
– Alumni: remove from list
– When you get credit: search the list

2



Naïve idea: array or linked list?

• Data in order:
– Search: binary search in O(log n) time
– Add and remove: O(n) time per data

• Data not in order:
– Search and remove: O(n) time per data
– Add: in O(1) time

Imagine: you 
have 10000 
students, and 
you have 300 
new students! 

3



Better idea: binary search tree
• For every vertex v, we have the following;

– Data in v > any data in a vertex in left subtree
– Data in v < any data in a vertex in right subtree

25

12 29

7 20 42

3 9 15

17

35

32 37

4



Better idea: binary search tree

5

• When data is random:
– Depth of the tree: O(log n)
– Search, add, remove: O(log n) time. 

• In the worst case:
– Depth of the tree: n
– When data is given in order, 

we have the worst case.
– Search, add, remove: O(n) time…



Nice idea:
(Self-)Balanced Binary Search Tree

• There are some algorithms that maintain to take 
balance of tree in depth 𝑂𝑂(log𝑛𝑛).
– e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)

6

Georgy M. Adelson-Velsky
(1922−2014)

Evgenii M. Landis
(1921−1997)



AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]

• Property (or assertion): at each vertex, the 
depth of left subtree and right subtree differs 
at most 1.

• Example: 

7



AVL tree: Insertion of data

• Find a leaf v for a new data x
• Store data x into v (v is not a leaf any more)
• Check the change of balance by insertion of x
• From v to the root, check the balance at each 

vertex, and rebalance (rotation) if necessary.
18

21

25

12

145
8

8



AVL tree: Insertion of data
Insert x=4

before after

18

21

25

12

145

8

18

21

25

12

145

84

9



AVL tree: Insertion of data
Insert x=10

before after

18

21

25

12

145

8

18

21

25

12

145

8

10

10



AVL tree: Insertion of data
Insert x=20

before after

18

21

25

12

145

8

18

21

25

12

145

8

20

11



AVL tree: Insertion of data
Insert x=23

before after

18

21

25

12

145

8

18

21

25

12

145

8 23

12



AVL tree: Rebalance by rotations

• “Rotate” tree vertices to make the difference 
up to 1:
– Rotation LL
– Rotation RR
– Double rotation LR
– Double rotation RL

13



AVL tree: Rebalance by rotation:
Rotation LL

• Lift up the left subtree if it becomes too deep

14



AVL tree: Rebalance by rotation:
Rotation RR

• Lift up the right subtree if it becomes too deep

15



AVL tree: Rebalance by rotation:
Double rotation LR

• When right subtree of left subtree becomes 
too deep, lift up the left-right subtree.

16



AVL tree: Rebalance by rotation:
Double rotation RL

• When left subtree of right subtree becomes 
too deep, lift up the right-left subtree.

17



AVL tree: Example

• Insertion of 8

5

9

7

3

8

5

8

7

3

9

Double 
rotation LR

18



AVL tree: Example

• Insertion of 6

5

8

7

3

9

6

5 8

7

3 96

Double 
rotation RL

19



AVL tree: Example

• Insertion of 4

5 8

7

3 96

4

20



AVL tree: Example

• Deletion of 6

5 8

7

3 96

4

4 8

7

3 95

Double 
rotation LR

21



AVL tree: Example

• Insertion of 6

4 8

7

3 95

6

22



AVL tree: Example

• Deletion of 8

4 8

7

3 95

6

4 9

7

3 5

6

4

9

7

3

5

6

Double 
rotation LR

23



Time complexity of balanced binary 
search tree

• Search: 𝑂𝑂(log𝑛𝑛) time
• Insertion/Deletion: 𝑂𝑂(log𝑛𝑛) time

– 𝑂𝑂 log𝑛𝑛 rotations
– Each rotation takes constant time 

• In total, on a balanced binary search tree, 
every operation can be done in 𝑂𝑂(log𝑛𝑛) time.
(n is the number of data in the tree)

24


	Introduction to �Algorithms and Data Structures��Lecture 15: Data Structure (5)�Dynamic Search Tree and Balancing 
	Dynamic search and data structure
	Naïve idea: array or linked list?
	Better idea: binary search tree
	Better idea: binary search tree
	Nice idea:�(Self-)Balanced Binary Search Tree
	AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]
	AVL tree: Insertion of data
	AVL tree: Insertion of data�Insert x=4
	AVL tree: Insertion of data�Insert x=10
	AVL tree: Insertion of data�Insert x=20
	AVL tree: Insertion of data�Insert x=23
	AVL tree: Rebalance by rotations
	AVL tree: Rebalance by rotation:�Rotation LL
	AVL tree: Rebalance by rotation:�Rotation RR
	AVL tree: Rebalance by rotation:�Double rotation LR
	AVL tree: Rebalance by rotation:�Double rotation RL
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	Time complexity of balanced binary search tree

