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Dynamic search and data structure

• Sometimes, we would like to search in 
dynamic data, i.e., we add/remove data in the 
data set.

• Example: Document management in 
university
– New students: add to list
– Alumni: remove from list
– When you get credit: search the list
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Naïve idea: array or linked list?

• Data in order:
– Search: binary search in O(log n) time
– Add and remove: O(n) time per data

• Data not in order:
– Search and remove: O(n) time per data
– Add: in O(1) time

Imagine: you 
have 10000 
students, and 
you have 300 
new students! 
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Better idea: binary search tree
• For every vertex v, we have the following;

– Data in v > any data in a vertex in left subtree
– Data in v < any data in a vertex in right subtree
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Better idea: binary search tree
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• When data is random:
– Depth of the tree: O(log n)
– Search, add, remove: O(log n) time. 

• In the worst case:
– Depth of the tree: n
– When data is given in order, 

we have the worst case.
– Search, add, remove: O(n) time…



Nice idea:
(Self-)Balanced Binary Search Tree

• There are some algorithms that maintain to take 
balance of tree in depth 𝑂𝑂(log𝑛𝑛).
– e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)
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AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]

• Property (or assertion): at each vertex, the 
depth of left subtree and right subtree differs 
at most 1.

• Example: 
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AVL tree: Insertion of data

• Find a leaf v for a new data x
• Store data x into v (v is not a leaf any more)
• Check the change of balance by insertion of x
• From v to the root, check the balance at each 

vertex, and rebalance (rotation) if necessary.
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AVL tree: Insertion of data
Insert x=4

before after
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AVL tree: Insertion of data
Insert x=10

before after
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AVL tree: Insertion of data
Insert x=20

before after
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AVL tree: Insertion of data
Insert x=23

before after
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AVL tree: Rebalance by rotations

• “Rotate” tree vertices to make the difference 
up to 1:
– Rotation LL
– Rotation RR
– Double rotation LR
– Double rotation RL
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AVL tree: Rebalance by rotation:
Rotation LL

• Lift up the left subtree if it becomes too deep
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AVL tree: Rebalance by rotation:
Rotation RR

• Lift up the right subtree if it becomes too deep
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AVL tree: Rebalance by rotation:
Double rotation LR

• When right subtree of left subtree becomes 
too deep, lift up the left-right subtree.

16



AVL tree: Rebalance by rotation:
Double rotation RL

• When left subtree of right subtree becomes 
too deep, lift up the right-left subtree.
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AVL tree: Example

• Insertion of 8
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AVL tree: Example

• Insertion of 6
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AVL tree: Example

• Insertion of 4
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AVL tree: Example

• Deletion of 6
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AVL tree: Example

• Insertion of 6
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AVL tree: Example

• Deletion of 8
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Time complexity of balanced binary 
search tree

• Search: 𝑂𝑂(log𝑛𝑛) time
• Insertion/Deletion: 𝑂𝑂(log𝑛𝑛) time

– 𝑂𝑂 log𝑛𝑛 rotations
– Each rotation takes constant time 

• In total, on a balanced binary search tree, 
every operation can be done in 𝑂𝑂(log𝑛𝑛) time.
(n is the number of data in the tree)
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