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Dynamic search and data structure

 Sometimes, we would like to search in

dynamic data, i.e., we add/remove data in the
data set.

 Example: Document management in
university
— New students: add to list
— Alumni: remove from list
— When you get credit: search the list

Q. Good data structure?



Naive idea: array or linked list?

e Data in order:

— Search: binary search in O(log n) time
students, and

you have 300
* Data not in order: new students!

— Search and remove: O(n) time per data
— Add: in O(1) time

— Add and remove: O(n) time per data



Better idea: binary search tree

* For every vertex v, we have the following;
— Data in v > any data in a vertex in left subtree

— Data in v < any data in a vertex in right subtree




Better idea: binary search tree

 When data is random:
— Depth of the tree: O(log n)
— Search, add, remove: O(log n) time.

* |n the worst case:
— Depth of the tree: n
— When data is given in order,
we have the worst case.
— Search, add, remove: O(n) time...
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Nice idea:
(Self-)Balanced Binary Search Tree

* There are some algorithms that maintain to take
balance of tree in depth O(logn).

— e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)

Georgy M. Adelson-Velsky
(1922-2014)

Evgenii M. Landis )
(1921-1997)



AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]

* Property (or assertion): at each vertex, the
depth of left subtree and right subtree differs

at most 1.

* Example: @
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AVL tree: Insertion of data

Find a leaf v for a new data x

Store data x into v (v is not a leaf any more)

Check the change of balance by insertion of x

From v to the root, check the balance at each
vertex, and rebalance (rotation) if necessary.
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What happens if you
insert x=4? How about
x=10, x=20, x=237



AVL tree: Insertion of data

Insert x=4
before after
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Balance: OK



AVL tree: Insertion of data

Insert x=10
before after
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AVL tree: Insertion of data

Insert x=20
before after
18 18
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Balance: OK



AVL tree: Insertion of data

Insert x=23
before after
18 18
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0:2@vertex 21



AVL tree: Rebalance by rotations

 “Rotate” tree vertices to make the difference
up to 1:
— Rotation LL
— Rotation RR
— Double rotation LR
— Double rotation RL



AVL tree: Rebalance by rotation:
Rotation LL

e Lift up the left subtree if it becomes too deep
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AVL tree: Rebalance by rotation:
Rotation RR

* Lift up the right subtree if it becomes too deep

|
/\ — T
-\ /\
P Q Chiidofp S
Q ————=
P /\
I\ -\ — .

Chitd of g



AVL tree: Rebalance by rotation:
Double rotation LR

* When right subtree of left subtree becomes
too deep, lift up the left-right subtree.
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AVL tree: Rebalance by rotation:
Double rotation RL

 When left subtree of right subtree becomes

too deep, lift up the right-left subtree.
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AVL tree: Example

* |Insertion of 8

Double
rotation LR 5
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AVL tree: Example

* |Insertion of 6

Double
5 rotation RL 7
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AVL tree: Example

* Insertion of 4
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AVL tree: Example

e Deletion of 6

Double
/ A rotation LR 7
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AVL tree: Example

* |Insertion of 6
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AVL tree: Example

e Deletion of 8
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Time complexity of balanced binary
search tree
* Search: O(logn) time
* Insertion/Deletion: O(logn) time

— O(logn) rotations

— Each rotation takes constant time

* |n total, on a balanced binary search tree,
every operation can be done in O(logn) time.

(n is the number of data in the tree)
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