Introduction to
Algorithms and Data Structures

Lecture 15: Data Structure (5)
Dynamic Search Tree and Balancing

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

mailto:uehara@jaist.ac.jp

Dynamic search and data structure

 Sometimes, we would like to search in

dynamic data, i.e., we add/remove data in the
data set.

 Example: Document management in
university
— New students: add to list
— Alumni: remove from list
— When you get credit: search the list

Q. Good data structure?

Naive idea: array or linked list?

e Data in order:

— Search: binary search in O(log n) time
students, and

you have 300
* Data not in order: new students!

— Search and remove: O(n) time per data
— Add: in O(1) time

— Add and remove: O(n) time per data

Better idea: binary search tree

* For every vertex v, we have the following;
— Data in v > any data in a vertex in left subtree

— Data in v < any data in a vertex in right subtree

Better idea: binary search tree

 When data is random:
— Depth of the tree: O(log n)
— Search, add, remove: O(log n) time.

* |n the worst case:
— Depth of the tree: n
— When data is given in order,
we have the worst case.
— Search, add, remove: O(n) time...

N7/
/

Nice idea:
(Self-)Balanced Binary Search Tree

* There are some algorithms that maintain to take
balance of tree in depth O(logn).

— e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)

Georgy M. Adelson-Velsky
(1922-2014)

Evgenii M. Landis)
(1921-1997)

AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]

* Property (or assertion): at each vertex, the
depth of left subtree and right subtree differs

at most 1.

* Example: @
I e

— /N
/N N /\@
/1 "\ i

AVL tree: Insertion of data

Find a leaf v for a new data x

Store data x into v (v is not a leaf any more)

Check the change of balance by insertion of x

From v to the root, check the balance at each
vertex, and rebalance (rotation) if necessary.

12

" —

18

A ———

/

21

N

/

25

\

What happens if you
insert x=4? How about
x=10, x=20, x=237

AVL tree: Insertion of data

Insert x=4
before after
18 18
N N
12 21 12 21
/N) /N)
R S G S = R S G
{ 8 / \ 4 |8 | \
/ 7\ [\ [\

Balance: OK

AVL tree: Insertion of data

Insert x=10
before after
18 18
N 7N
12 21 12 21
/N /) u? N/
5\ 14 125\ ii 14 25
AR SR A W
/ 7\ A\
10

0:2@vertex 5

AVL tree: Insertion of data

Insert x=20
before after
18 18
RN SN
12 21 12 21

/ N\ /) /\ |\
5\ 14 125\ 5 14 ' 20 25\
/ 8 [\ / \8 1]\ !

/ 7\ [\

Balance: OK

AVL tree: Insertion of data

Insert x=23
before after
18 18
N SN
12 21 12 X 21
/N) /N
5\ 14 125\ /5 14 /25\
/ 8 l \ \8 I l 23
/ 7\ [\ [\

0:2@vertex 21

AVL tree: Rebalance by rotations

 “Rotate” tree vertices to make the difference
up to 1:
— Rotation LL
— Rotation RR
— Double rotation LR
— Double rotation RL

AVL tree: Rebalance by rotation:
Rotation LL

e Lift up the left subtree if it becomes too deep

q/p;,k\

i /\
/\ —
\\ Child of g g q
/\
\ <
\ N\

Child of p

< y

ﬁ

AVL tree: Rebalance by rotation:
Rotation RR

* Lift up the right subtree if it becomes too deep

|
/\ — T
-\ /\
P Q Chiidofp S
Q ————=
P /\
I\ -\ — .

Chitd of g

AVL tree: Rebalance by rotation:
Double rotation LR

* When right subtree of left subtree becomes
too deep, lift up the left-right subtree.

/

4
/
\

gk

L / \
/N Q —
e q
-

I\

-
\
)

r

P
/N

= [\

16

AVL tree: Rebalance by rotation:
Double rotation RL

 When left subtree of right subtree becomes

too deep, lift up the right-left subtree.
/& q

[\

/\ " T
r /N
p —~_q /=
P S 7S
/\ f=

AVL tree: Example

* |Insertion of 8

Double
rotation LR 5
N
3 8
VN

7

9

18

AVL tree: Example

* |Insertion of 6

Double
5 rotation RL 7
—_ N~

5
3 8
PN /7 \
7 9 3 6

7
6

3

AN

S

19

AVL tree: Example

* Insertion of 4

7/
— S
3

5
/N N\
3 6

N

4

9

AVL tree: Example

e Deletion of 6

Double
/ A rotation LR 7
5 8 ::> P T
3 6 9 / \
3
\ 5

4

AVL tree: Example

* |Insertion of 6

7/
— S~
3

4
/ N\ N
3 5

AN

6

9

AVL tree: Example

e Deletion of 8

3/\/\5

\/\

| 9 3
6

Double
7 rotation LR
—
4 9 j> 4

Time complexity of balanced binary
search tree
* Search: O(logn) time
* Insertion/Deletion: O(logn) time

— O(logn) rotations

— Each rotation takes constant time

* |n total, on a balanced binary search tree,
every operation can be done in O(logn) time.

(n is the number of data in the tree)

	Introduction to �Algorithms and Data Structures��Lecture 15: Data Structure (5)�Dynamic Search Tree and Balancing
	Dynamic search and data structure
	Naïve idea: array or linked list?
	Better idea: binary search tree
	Better idea: binary search tree
	Nice idea:�(Self-)Balanced Binary Search Tree
	AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]
	AVL tree: Insertion of data
	AVL tree: Insertion of data�Insert x=4
	AVL tree: Insertion of data�Insert x=10
	AVL tree: Insertion of data�Insert x=20
	AVL tree: Insertion of data�Insert x=23
	AVL tree: Rebalance by rotations
	AVL tree: Rebalance by rotation:�Rotation LL
	AVL tree: Rebalance by rotation:�Rotation RR
	AVL tree: Rebalance by rotation:�Double rotation LR
	AVL tree: Rebalance by rotation:�Double rotation RL
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	Time complexity of balanced binary search tree

