
Introduction to
Algorithms and Data Structures

Lesson 16: Advanced Algorithm
Dynamic Programming

Professor Ryuhei Uehara,
School of Information Science, JAIST,

Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

1

mailto:uehara@jaist.ac.jp

2/38

Developing Algorithms based on Dynamic Programming

Problem solving by dynamic programming
1. Characterize a structure of an optimal solution.
2. Define an optimal solution recursively.

(construct a solution using solutions to subproblems)
3. Compute a value of an optimal solution in a bottom-up

manner (in the way to fill in a table)
4. Construct an optimal solution using information obtained.

(not only finding a value of an optimal solution but also
constructing an optimal solution by following in the table)

Objects: optimization problems
problem of finding an optimal solution among
those satisfying given constraints.

3/40

Problem P1: Calculate the number C(n, k) of combinations
to choose k items from n different items.

Number of combinations

Using the formula,
C(n, k) = C(n-1, k-1) + C(n-1, k), if 0<k<n，
C(n, 0) = C(n, n) = 1.

Therefore, we have the following program.
int C(int n, int k){

if(k==0 || k==n) return 1;
return C(n-1, k-1) + C(n-1, k);

}

When you implement the program in
practice, you will find that it takes much
time. Why does it take time?

Analysis of computation time：
Let T(n,k) be time to compute C(n,k). Then, we have
T(n,k)=T(n-1,k-1)+T(n-1,k). Thus, T(n,k)=C(n,k).
This is an exponential function．

4/40

Let's analyze behavior of the program!

How is the function called
The function is called many times for the same value.
Example：C(3,2) is called twice.redundant

If we store the value C(n,k) as the (n,k) element of an array
when it is first computed, then the same value is never computed
twice. Basically, it suffices to fill in the table.

C(5,3)

C(4,2) C(4,3)

C(3,1) C(3,2) C(3,2) C(3,3)

C(2,0) C(2,1) C(2,1) C(2,2) C(2,1) C(2,2)

C(1,0) C(1,1) C(1,0) C(1,1)C(1,0) C(1,1)

5/40

Fill in the table C(n,k)!
Formula：C(n,k) = C(n-1,k-1) + C(n-1,k)
If the values in the (n-1)-st row are available, C(n,k) is easily
computed. Thus, we should fill in the table from the 1st row.

0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3
4
5

0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4
5

0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5

0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

C(n-1,k-1) C(n-1,k)

C(n,k)

Each element of the table can be
computed in constant time.
Thus, the total time is

O(n2).

6/40

C program is as follows：
int C(int n, int k){

C[0][0]=1;
for(i=1; i<=n; i++){

C[i][0]=1; C[[i][i]=1;
for(j=1; j<i; j++)

C[i][j] = C[i-1][j-1] + C[i-1][j];
}
return C[n][k];

}

Using the formula C(n,k) = ，it can be computed in O(n).n!
(n-k)! k!

Naive Algorithm 2：

Here, note that this algorithm may suffer from numerical overflow.

Exercise E1: Consider an
algorithm that computes
C(n,k) based on the Naïve
idea such that it computes
C(n,k) correctly if C(n,k)
itself does not overflow.

7/40

Computation of Fibonacci number

Problem P2: Compute the Fibonacci number F(n) defined by
F(n) = F(n-1) + F(n-2), if n>1，
F(0) = F(1) = 1.

Exercise E2：Have an argument similar to that in Problem 1．

Supplemental information:
Using the golden ration φ =(1+√5)/2≒1.61803,
the Fibonacci number F(n) can be represented as

F(n) = O(φn).

Fibonacci number：
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

8/40

Longest Common Subsequence
Problem P3: Given two strings A and B of lengths n and m,
find the longest substring common to both of them.

Example： For A = G A A T T C A G T T A and B= G G A T C G A,
the longest common substring is GATCA．

A= GAATTC AGTTA

B=GGA T CGA

Any substring A' of A is a substring of B if characters of A' appear
in the same order in the string B.
It can be determined in linear time.

Exercise E3：Write a program to determine whether the first
string of two input strings is a substring of the second string in
linear time.

9/40

Algorithm P3-A0: （Brute-Force Algorithm）
For each substring A' of a string A, determine whether A' is a
substring of a string B, and finally output the longest common
substring.

Analysis of computation time：
・There are 2n different substrings of a string of length n．
・If this substring is longer than the string B, obviously it is not

a substring of B.
・Otherwise, each test takes O(m) time.
・Thus, the total time is O(2n m) time.

Is it possible to have faster algorithm?
Is there any polynomial-time algorithm?

10/40

Algorithm P3-A1:
A= a1a2...an, B= b1b2... bm
L[i,j] = the length of the longest substring common to a1a2...ai and

b1b2... bj

Observation：
(0) if i=0 or j=0，L[i,j]=0.
(1) ai＝bj L[i,j] = L[i-1,j-1]+1
(2) ai≠bj L[i,j] = max{ L[i,j-1], L[i-1, j]}

A=GAATTC AGTTA
B= GGATC GA

when ai＝bj

A=GAATTC AGTTA
B=GGATCG A

when ai≠bj

Therefore, it suffices to fill in the table L[i,j] in order.
Since the table size is n×m, it takes O(nm) time．

11/40

Algorithm P3-A1:
for(i=0; i<=n; i++)

L[i][0]=0;
for(j=0; j<=m; j++)

L[0][j] = 0;
for(i=1; i<=n; i++)

for(j=1; j<=m; j++)
if(a[i] == b[j]) L[i][j] = L[i-1][j-1]+1;
else L[i][j] = max{ L[i][j-1], L[i-1][j] };

return L[n][m];

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 1 1 1 1 1 1

2 0 0 1 1 2 2 2 2 2 2 2 2 2

3 0 0 1 1 2 2 2 3 3 3 3 3 3

4 0 0 1 1 2 2 2 3 4 4 4 4 4

5 0 1 1 2 2 2 3 3 4 4 4 4 5

6 0 1 2 2 2 2 3 4 4 4 5 5 5

7 0 1 2 2 3 3 3 4 4 5 5 5 5

8 0 1 2 3 3 3 4 4 4 5 5 5 6

9 0 1 2 3 3 3 4 4 5 5 6 6 6

10 0 1 2 3 4 4 4 5 5 6 6 6 6

Example for the case
A=XYXXZXYZXY and
B=ZXZYYZXXYXXZ

A= X Y XXZXYZXY,
B=ZXZYYZXXYXXZ

12/40

Construction of an optimal solution

The value of an optimal solution is obtained by filling in the table.
How can we construct an optimal solution achieving the value?

In the problem of finding the longest common substring, we want
to find not only the length (value of an optimal solution) but also
the longest such substring (optimal solution) itself.

(1) ai＝bj L[i,j] = L[i-1,j-1]+1
(i-1, j-1) is memorized

(2) ai≠bj L[i,j] = max{ L[i,j-1], L[i-1, j]}
if L[i,j-1]>L[i-1,j] then (i, j-1) is memorized，and
otherwise，(i-1, j) is memorized.

When we fill in the table, we memorize which table element
determined L[i][j].

13/40

for(i=1; i<n; i++)
for(j=1; j<m; j++){

if(A[i] == B[j]){
L[i][j] = L[i-1][j-1] + 1;
B1[i][j] = i-1; B2[i][j] = j-1;

} else {
L[i][j] = max2(L[i][j-1], L[i-1][j]);
if(L[i][j-1] > L[i-1][j]){

L[i][j] = L[i][j-1];
B1[i][j] = B1[i][j-1]; B2[i][j] = B2[i][j-1];

} else {
L[i][j] = L[i-1][j];
B1[i][j] = B1[i-1][j]; B2[i][j] = B2[i-1][j];

}
}

}

Concrete program

Exercise E4：Write a program in practice to see
its behavior.

14/40

Table for backtrack
1 2 3 4 5 6 7 8 9 10 11 12

1 (0,0) (0,1) (0,1) (0,1) (0,1) (0,1) (0,6) (0,7) (0,7) (0,9) (0,10) (0,10)
2 (0,0) (0,1) (0,1) (1,3) (1,4) (1,4) (1,4) (1,4) (1,8) (1,8) (1,8) (1,8)
3 (0,0) (2,1) (0,1) (1,3) (1,4) (1,4) (2,6) (2,7) (2,7) (2,9) (2,10) (2,10)
4 (0,0) (3,1) (0,1) (1,3) (1,4) (1,4) (3,6) (3,7) (3,7) (3,9) (3,10) (3,10)
5 (4,0) (3,1) (4,2) (1,3) (1,4) (4,5) (3,6) (3,7) (3,7) (3,9) (3,10) (4,11)
6 (4,0) (5,1) (4,2) (1,3) (1,4) (4,5) (5,6) (5,7) (3,7) (5,9) (5,10) (4,11)
7 (4,0) (5,1) (4,2) (6,3) (6,4) (4,5) (5,6) (5,7) (6,8) (5,9) (5,10) (4,11)
8 (7,0) (5,1) (7,2) (6,3) (6,4) (7,5) (5,6) (5,7) (6,8) (5,9) (5,10) (7,11)
9 (7,0) (8,1) (7,2) (6,3) (6,4) (7,5) (8,6) (8,7) (6,8) (8,9) (8,10) (7,11)

10 (7,0) (8,1) (7,2) (9,3) (9,4) (7,5) (8,6) (8,7) (9,8) (8,9) (8,10) (7,11)

For the case: A=XYXXZXYZXY, B=ZXZYYZXXYXXZ

If we trace the table from L[10][12] in reverse order,
L[10][12] L[7][11]L[5][10]L[3][9]L[2][7]L[1][4]L[0][1]

a[8]b[12] a[6]b[11] a[4]b[10] a[3]b[8] a[2]b[5] a[1]b[2]
Thus, the longest common substring is
123456789A 123456789ABC

XYXXZXYZXY ZXZYYZXXYXXZ XYXXXZ

15/40

Problem P4: （Knapsack Problem）
Given n objects oi (i=1, ... , n) and their weights wi , prices vi, and
the capacity (or weight limit) C of a knapsack, find an optimal way
of packing objects into the knapsack to meet the capacity constraint
in such a way that the total price is maximized.

Input: I = {w1, ... , wn; v1, ... , vn; C}．A solution is represented by
a subset S of {1,2,...,n}.
An optimal solution is such a set S satisfying the

Capacity constraint ∑i∈S wi≦C
and maximizing

total sum of prices ∑i∈S vi．

Assumption： Assume that weight of any object does not exceed
the capacity C because any object with weight exceeding C is
never selected.

16/40

Example：Consider the case in which (w1, ..., w5)=(2,3,4,5,6),
(v1, ..., v5)=(4,5,8,9,11), C=10.

V[k] = value of an optimal solution for objects up to the k-th one.
Then, by the definition

V[1]≦V[2] ≦・・・≦V[n].
In this example, we have
V[1] = v1=4, w1=2≦C,

V[2] = v1+v2=4+5=9, w1+w2=2+3≦C,
V[3] = v1+v2+v3=4+5+8=17, w1+w2+w3=2+3+4≦C,
V[4] = v1+v2+v4=4+5+9=18, w1+w2+w4=2+3+5≦C,
V[5] =v3+v5=8+11=19, w3+w5=4+6≦C.

Here, {1,2,3,4} is not a solution since the total weight exceeds
the capacity 10.

In this example, an optimal solution to a subproblem may not be
included in an optimal solution. Thus, we cannot apply Dynamic
Programming to find a solution in the above order.

17/40

For each object there are two ways, to choose or not to choose.
⇒there are 2n ways to choose objects.
It takes exponential time if we examine all possible cases.

Then, what about a method to examine all possible ways of
choosing objects?

To apply Dynamic Programming, an optimal solution must be defined
recursively so that it includes a solution to a subproblem.

D[i,j] = the largest total price among all possible ways to choose
objects from objects 1, ... , i so that the total weight is j.

It is 0 if there is no way to choose them so that the total weight is j.

If an optimal solutions for objects 1,...,i-1 is known, we just consider
two cases, to add an object i and not to add it. Thus, we have
D[i,j] = max{D[i-1, j], D[i-1,j-wi]+vi}

This implies the property of Optimal Substructure．

18/40

Example： Let (w1, ..., w5)=(2,3,4,5,6), (v1, ..., v5)=(4,5,8,9,11), C=10.
i=1only two ways to choose object 1 or not choose it:

D[1,w1]=D[1,2]=v1=4, D[1,j]=0, j≠2,
i=2there are four cases: {}, {1}, {2}, {1,2}

D[2,2]=4, D[2,3]=5, D[2,5]=9, D[2,j]=0 j≠2,3,5

k 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0
1 4
2 4 5 9
3 4 5 8 9 12 13 17
4 4 5 8 9 12 13 14 17 18
5 4 5 8 9 12 13 15 17 19

We can ignore a set of objects if their total weight exceeds 10.

indicates a new
solution

w1=2,v1=4

w2=3,v2=5

w3=4,v3=8

w4=5,v4=9

w5=6,v5=11

19/40

Algorithm P4-A0:
Input：n objects oi(i=1, ... , n): weight wi and price vi，capacity C.
for(i=1; i<=C; i++)

D[0,i] = 0;
for(k=1; k<=n; k++)

for(i=1; i<=C; i++)
if(i＜wi) D[k,i] = D[k-1,i];
else {

if(D[k-1,i-wi]+vi > D[k-1,i])
D[k,i] = D[k-1,i-wi]+vi;

else
D[k,i] = D[k-1, i];

}
max=0;
for(i=1; i<=C; i++)

if(D[n,i]>max) max = D[n,i];
return max;

20/40

Want to construct an optimal solution with the value of optimal solution.

We maintain not only the table D[i,j] but also the combination to
give the value of D[i,j].
D[i,j] = max{D[i, j-1], D[i-wj,j-1]+vj}
T[i,j] = j if D[i,j]=D[i-wj,j-1]+vj
T[i,j] = 0 if D[i,j]=D[i,j-1]
Then, we can construct an optimal solution by tracing back the
value of D from D[i,n] giving the optimal solution.

k 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0
1 4/1
2 4/0 5/2 9/2
3 4/0 5/0 8/3 9/0 12/3 13/3 17/3
4 4/0 5/0 8/0 9/0 12/0 13/0 14/4 17/0 18/4
5 4/0 5/0 8/0 9/0 12/0 13/0 15/5 17/0 19/5

values of D[i,j]/T[i,j]

21/40

k 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0
1 4/1
2 4/0 5/2 9/2
3 4/0 5/0 8/3 9/0 12/3 13/3 17/3
4 4/0 5/0 8/0 9/0 12/0 13/0 14/4 17/0 18/4
5 4/0 5/0 8/0 9/0 12/0 13/0 15/5 17/0 19/5

Values of D[i,j]/T[i,j]

The value of an optimal solution is given by D[5,10]=19.
D[5,10]=19, T[5,10]=5≠0, output object 5.
Since w5=6，its predecessor is D[4,10-6]=D[4,4]，
D[4,4]=8, T[4,4]=0, output nothing．The predecessor is D[3,4]=8.
D[3,4]=8, T[3,4]=3≠0, output object 3.
Since w3=4，its predecessor is D[2,4-4]=D[2,0].
Now the total weight becomes 0, and thus this is the end.
After all, the set of objects for an optimal solution is {3,5}.

22/40

Algorithm P4-A1:
Input：n objects oi(i=1, ... , n): weight wi and price vi，capacity C.
for(i=0; i<=C; i++)

D[0,i] = T[0,i]=0;
for(k=1; k<=n; k++)

for(i=1; i<=C; i++)
if(i＜wk){ D[k,i] = D[k-1,i]; T[k,i]=0;}
else {

if(D[k-1,i-wk]+vk > D[k-1,i])
{D[k,i] = D[k-1,i-wk]+vk; T[k,i]=k;}

else
{D[k,i] = D[k-1, i]; T[k,i]=0;}

}
k=0;
for(i=1; i<=C; i++)

if(D[n,i]>D[n, k]) k = i;
for(i=n; i>0 && k>0; i--)

if(T[i,k] > 0) {
Output T[i,k]; k = k - wi;

}

23/40

Analysis of Computation Time

From the structure of the algorithm the computation time is given
by

O(nC).
(1) If the capacity C is polynomial in the number n of objects

⇒ this computation time is a polynomial in n.
(2) If C is much larger than n.

The value C itself can be represented by log C bits.
⇒Time is proportional to an exponential function in input size.

It is called a pseudo-polynomial time algorithm.

Exercise E5：Algorithm P4-A1 uses two 2-dimensional
arrays. Show that one of them cab be replaced by a one-
dimensional array.

24/38

Problem P5: （Construction of an optimal binary search tree)
When probability that each element is asked is given, store n data
in a binary search tree so that the expected number of comparisons
to locate a query in the tree is minimized.

Data to be stored： S = {a1, a2, ... , an}, a1≦ a2≦・・・ ≦ an
A priori knowledge：Assume that only elements of S are retrieved.

probability for Find(ai, S) is pi
When S is stored in a binary search tree,

let the level of a node ai containing an element of S be level(ai).
the number of comparisons for searching ai is level(ai) +1

(assuming the level of the root node is 0)
Therefore, the cost of a search tree (expected number of comparisons)
is given by

Cost of search tree＝ ∑ pi × [level (ai) +1]

25/38

Examlpe：
a[1] a[2] a[3] a[4]

S 2 3 5 6

2/10 1/10 5/10 2/10
p1 p2 p3 p4

2

3

5

6

2

1

5

2

cost=(2*1+1*2+5*3+2*4)/10
=2.7

level 0
level 1

level 2

level 3

level 4

2

3

5

6
2

1

5

2

cost=(2*1+2*2+5*3+1*4)/10
= 2.5

26/38

3

5

6

1

5

2

2
2

cost=(1*1+(2+5)*2+2*3)/10 =2.1

3

5

6

1

5

2
2
2

cost=(5*1+(2+2)*2+1*3)/10 = 1.6

If we enumerate all search trees and compute their costs, then
we can find an optimal search tree. But it is not efficient to
enumerate all of them.

27/38

Construction of an optimal binary search tree

Characterize structure of an optimal solution and define the value
of an optimal solution recursively.

T[i,j] = minimum-cost tree for a subset {ai, ai+1, ... , aj}
i=1, ... ,n, j=i, i+1, ... , n

If T[2,n], T[3,n], ... , T[1,2], T[4,n], ... , T[1,n-1] are all available,
costs of those trees can be computed. If we choose the minimum-
cost tree, we can determine its root ak．

a1

T[2,n]

a3

T[4,n]T[1,2]

a2

T[3,n]

a1

ak

T[k+1,n]T[1,k-1]

an

T[1,n-1]

Enumerating all possibilities:

28/38

Computing the value of optimal solution in a bottom-up fashion

{T[i, i+1], i=1, 2, ... , n-1} is computed・・・・・difference 1
{T[i, i+2], i=1, 2, ... , n-2} is computed・・・・・difference 2

：
{T[i, i+k], i=1, 2, ... , n-k} is computed・・・・・difference1 k

：
Finally, we compute T[1, n], which is the value of optimal solution.

T[1,n]

29/38

How to compute T[i, i+k]

T[i,i+k] = min-cost tree for a subset {ai, ai+1, ... , ai+k}. Thus,
k+1 different roots ai, ai+1, ... , ai+k are possible.
If we choose aj as a root,

an optimal solution has T[i,j-1] as its left
subtree and T[j+1,i+k] as right subtree.

Note that one level is increases than when
computing the costs for T[i,j-1] and T[j+1,i+k].

aj

T[j+1,i+k]T[i,j-1]

T[i,j-1]= ∑ pm × [level (am) +1]
If we increase the level by one，
T’[i,j-1]= ∑ pm × [level (am) +2] = T[i,j-1] + ∑ pm
That is, we have the value one level down by adding
pi + pi+1 +... + pj-1 to T[i,j-1]． Same for T’[j+1,i+k]．
Thus, the cost with aj at the root is given by：

pj+T’[i,j-1]+T’[j+1,i+k]
= T[i,j-1]+T[j+1,i+k]+ pi + pi+1 +... + pj+k

30/38

How to compute T[i, i+k]

the cost when aj is the root is given by the following:
C[i,j-1]+C[j+1,i+k]+ W[i, i+k]

C[i,j] = cost of the minimum-cost tree T[i,j] for {ai, ai+1, ... , aj}
W[i,j] = pi + pi+1 +... + pj
Then,

C[i,i+k] is obtained by taking the minimum value while varying j.
Considering the cases where ai and ai+k are roots, we have

C[i,i+k] = min{ C[i+1,i+k]+W[i,i+k],
min{C[i,j-1]+C[j+1,i+k]+W[i,i+k], j=i+1, ... , i+k-1},
C[i,i+k-1]+W[i,i+k]}

k=1, 2, ... , n-i

31/38

2
2

3
1

5
5

6
2

T[1,1]
C[1,1]=0.2

T[2,2]
C[2,2]=0.1

T[3,3]
C[3,3]=0.5

T[4,4]
C[4,4]=0.2

C[i,j] = cost of minimum-cost tree T[i,j] for {ai, ai+1, ... , aj}
W[i,j] = pi + pi+1 +... + pj

3

5

6

1

5

2

2
2

2

3
2

1

T[2,2]

3

2
1

2

T[1,1]
Cost
=0.2+C[2,2]+W[2,2]
=0.2+0.1+0.1=0.4

Cost
=0.1+C[1,1]+W[1,1]
=0.1+0.2+0.2=0.5

32/40

Problem P6: （Chained Matrix Product）
Given a sequence of n matrices <A1,A2, ... , An>, find an order of
matrix products to minimize the number of operations to compute
the matrix product A1×A2× ... × An .

Example：A1=10×20 matrix，A2=20×5 matrix，A3=5×25 matrix.
((A1×A2)×A3) require (10×20×5)+(10×5×25)=2250 ops.
(A1×(A2×A3)) requires (10×20×25)+(20×5×25)=7500 ops.

Thus, the former needs less operations.

× =

3×4 4×3 3×3

Product of a p×q matrix and q×r
matrix is a p×r matrix using
p×q×r operations (multiplication
and additioN).

33/40

For product of four matrices, there are many orders for their product.
((A1×(A2×A3))×A4)
(((A1×A2)×A3)×A4)
((A1×A2)×(A3×A4))
(A1×((A2×A3)×A4))
(A1×(A2×(A3×A4)))

It suffices to obtain the number of operations for all of them.

Exercise E6：Prove that there are O(4n/n3/2) ways for parenthe-
sizations. This is known as the Catalan number.
Hint: Suppose there are P(n) ways for parenthesization. In each
sequence we can parenthesize it by dividing it between its k-th and
(k+1)-st position into subsequences independently. Thus, we have

P(1) = 1
P(n) = ∑k=1

n-1 P(k)P(n-k)

Precisely,

()1 2
1

n
nn +

Due to Richard P. Stanley, the Catalan number has 207 representations!
(http://www-math.mit.edu/~rstan/ec/)

34/40

To compute the product of 4 matrixes
((A1×(A2×A3))×A4) last is the product of (A1,A2,A3) and A4
(((A1×A2)×A3)×A4) last is the product of (A1,A2,A3) and A4
((A1×A2)×(A3×A4)) last is the product of (A1,A2) and (A3,A4)
(A1×((A2×A3)×A4)) last is the product of A1 and (A2,A3,A4)
(A1×(A2×(A3×A4))) last is the product of A1 and (A2,A3,A4)

If we know an optimal orders for subsequences, it suffices to check
the three ways of partitions.
((A1,A2,A3), A4)，((A1,A2), (A3,A4)), (A1,(A2,A3,A4))

Generally, the problem is the place for the first partition.
((A1, ...,Ak), (Ak+1, ... , An)) k=1, 2, ... , n-1

If we know an optimal order for computation for each subsequence,
then an optimal order for computation is obtained.

Characterize structure of an optimal solution and define the value
of an optimal solution recursively.

35/40

Let the size of each matrix be pi×qi. Then, only if we have
q1=p2, q2=p3, ... , qn=pn+1

the product of those matrices is defined. Thus, we only specify
p1, p2, ... , pn, pn+1 for input.

If we take the product of matrices from Ai to Aj
then the pi×qj=pj+1matrix is obtained.

M[i,j] = the smallest number of computations to calculate the product
of matrices from Ai to Aj．For the computation it suffices to evaluate
all possible productions of matrices from Ai to Ak and those from
Ak+1 to Aj for each k between i and j.
The product for Ai through Ak is a pi×pk+1 matrix, and that for
Ak+1 through Aj is a pk+1×pj+1 matrix.

Thus, the number of operations we need to compute them is
pipk+1pｊ+1 ．

Therefore, the recurrence equation for M[i,j] is
M[i, j] = min{M[i,k]+M[k+1,j]+pipk+1pｊ+1, k=i,i+1, ... , j-1}．

36/40

algorithm P6-A0:
input：matrix sizes (p1rows p2 columns),(p2, p3), ... ,(pn, pn+1).
for(i=1; i<=n; i++)

M[i,i] = 0;
for(d=1; d<=n; d++)

for(i=1; i<=n-d; i++)
j=i+d;
msf = M[i,i]+M[i+1,j]+pipi+1pj+1;
for(k=i; k<j; k++)

if(M[i,k]+M[k+1,j]+pipk+1pj+1 < msf)
msf = M[i,k]+M[k+1,j]+pipk+1pj+1;

M[i,j] = msf;
}

return M[1,n];

Exercise E7：The above algorithm only finds the value of an
optimal solution. Modify it so that an optimal order of computation
is also obtained.

37/40

Problem P7: （Travelling-Salesperson Problem）
Given a weighted graph for a road network interconnecting n cities,
find a shortest closed tour starting from a city and coming back to
it after visiting every city.

1 2

34

10
5

15

8
10
9

12

8
6

20 13 9

0 10 15 20
5 0 9 10
6 13 0 12
8 8 9 0

L=

tour(1,2,3,4,1) : length=10+9+12+8=39,
tour(1,2,4,3,1) : length=10+10+9+6=35,
tour(1,3,2,4,1) : length =15+13+10+20=58,
tour(1,3,4,2,1) : length =15+12+8+5=40, etc.

L[i,j] is the distance between
city i and city j.

38/40

How many tours are there in total?

If there is a road between any two cities, then there are (n-1)! tours.
Using the Stirling’s formula, we have

n! ≒√(2πn)(n/e)n ．
This is roughly an exponential function nn．

Numbering the cities as 1, 2, ... , n, and assume that we start at
city 1 and come back to it.
The set of all cities: N={1, 2, ... , n}. S is a subset of N.
For a subset S not containing city 1,

g(i, S) = the length of a shortest path from city i coming back to
city 1 through every city of S.

Note that i does not belong to S.
Then, the length of the shortest tour is given as

g(1, {2, 3, ... , n}).

39/40

Let’s define g(i, S) recursively!

Si

1

If j is a candidate among S for the city after city i, the length of an
optimal path to city 1 is given by

g(j, S-{j}).
Thus, the recurrence equation for g(i, S) becomes

g(i, S) = minj∈S{L[i,j] + g(j, S-{j})},
where i is not an element of S．
L[i,j] denotes the distance between city i and city j．

j

To apply Dynamic Programming, an optimal solution must be defined
recursively so that it includes a solution to a subproblem.

40/40

1 2

34

10
5

15

8
10
9

12

8
6

20 13 9

|S|=0
g(2, Φ)=L[2,1]=5
g(3, Φ)=L[3,1]=6
g(4, Φ)=L[4,1]=8

|S|=1
g(2, {3})=L[2,3]+g(3, Φ)=15
g(2, {4})=L[2,4]+g(4, Φ)=18
g(3, {2})=L[3,2]+g(2, Φ)=18
g(3, {4})=L[3,4]+g(4, Φ)=20
g(4, {2})=L[4,2]+g(4, Φ)=13
g(4, {3})=L[4,3]+g(3, Φ)=15

|S|=2
g(2, {3,4})=min{L[2,3]+g(3, {4}), L[2,4]+g(4,{3})}=min{29,25}=25
g(3, {2,4})=min{L[3,2]+g(2, {4}), L[3,4]+g(4,{2})}=min{31,25}=25
g(4, {2,3})=min{L[4,2]+g(2, {3}), L[4,3]+g(3,{2})}=min{23,27}=23

|S|=3
g(1, {2,3,4})=min{L[1,2]+g(2, {3,4}), L[1,3]+g(3, {2,4}),L[1,4]+g(4, {2,3})}

= min{35, 40, 43} = 35.
Therefore, the length of an optimal tour is 35.

41/40

Algorithm P7-A0:
Input: A graph representing distances among cities.
U={1, 2, ... , n}．
for(i=2; i<=n; i++)

g(i, Φ)=L[1,i];
for(k=1; k<n; k++){

for each subset S of size k not containing 1 {
for each i not contained in S

g(i, S) = minj∈S{L[i,j] + g(j, S-{j})}
}
return g(1, {2, 3, ... , n});

Exercise E8： Express the computation time and amount of
storage of the above algorithm as functions of n.
(Hint: It is not a polynomial, but it’s better than nn.)

	Introduction to �Algorithms and Data Structures��Lesson 16: Advanced Algorithm�Dynamic Programming
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28
	スライド番号 29
	スライド番号 30
	スライド番号 31
	スライド番号 32
	スライド番号 33
	スライド番号 34
	スライド番号 35
	スライド番号 36
	スライド番号 37
	スライド番号 38
	スライド番号 39
	スライド番号 40
	スライド番号 41

