
First Course in Algorithms through Puzzles

Ryuhei Uehara





Introduction

This book is an introduction to algorithms. What is an algorithm? In short,
“algorithm” means “a way of solving a problem.” When people encounter a prob-
lem, the approach to solving it depends on who is solving it, and then the efficiency
varies accordingly. Lately, mobile devices have become quite smarter, planning your
route when you provide your destination, and running an application when you talk
to it. Inside this tiny device, there exists a computer that is smarter than the old
large-scale computers, and it runs some neat algorithms to solve your problems.
Smart algorithms use clever tricks to reduce computational time and the amount
of memory needed. Paul Erdős(1913–

1996):

He was one of the

most productive

mathematicians of

the 20th century,

and wrote more than

1400 journal papers

with more than 500

collaborators. Erdő

numbers are a part

of the folklore of

mathematicians that

indicate the distance

between themselves

and Erdős. Erdős

himself has Erdős

number 0, and his

coauthors have Erdős

number 1. For ex-

ample, the author

has Erdős number

2 because he has

collaborated with a

mathematician who

has Erdős number 1.

One may think that “from the viewpoint of the progress of hardware devices,
is an improvement such as this insignificant?” However, you would be wrong. For
example, take integer programming. Without going into details, it is a general
framework to solve mathematical optimization programs, and many realistic prob-
lems can be solved using this model. The running time of programs for solving
integer programming has been improved 10,000,000,000 times over the last two
decades.1 Surprisingly, the contribution of hardware is 2000 times, and the contri-
bution of software, that is, the algorithm, is 475000 times. It is not easy to see, but
“the improvement of the way of solving” has been much more effective than “the
development of hardware.”

In this book, the author introduces and explain the basic algorithms and their
analytical methods for undergraduate students in the Faculty of Information Sci-
ence. This book starts with the basic models, and no prerequisite knowledge is
required. All algorithms and methods in this book are well known and frequently
used in real computing. This book aims to be self-contained; thus, it is not only a
textbook, but also allows you to learn by yourself, or use as a reference book for be-
ginners. On the other hand, the author provides some smart tips for non-beginner
readers.

Exercise. Exercises appear in the text, and are not collected at the end of sections.
If you find an exercise when you read this book, the author would like to ask you
to take a break, tackle the exercise, and check the answer and comments. For every
exercise, an answer and comments are given in this book.

Each exercise is marked with marks and those with many cups are more
difficult than those with fewer ones. They say that “a mathematician is a machine
for turning coffee into theorems” (this quotation is often attributed to Paul Erdős,
however, he ascribed it to Alfréd Rényi). In this regard, the author hopes you will
enjoy them with cups of coffee.

1R. Bixby, Z. Gu, and Ed Rothberg, “Presolve for Linear and Mixed-Integer Programming,”
RAMP Symposium, 2012, Japan.
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4 INTRODUCTION

Exercises are provided in various ways in your textbooks and reference books.
In this book, all solutions for exercises are given. This is rather rare. Actually,
this is not that easy from the author’s viewpoint. Some textbooks seem to be
missing the answers because of the authors’ laziness. Even if the author considers
a problem “trivial,” it is not necessarily the case for readers, and beginners tend
to fail to follow in such “small” steps. Moreover, although it seems trivial at a
glance, difficulties may start to appear when we try to solve some problems. For
both readers and authors, it is tragic that beginners fail to learn because of authors’
prejudgments.

Even if it seems easy to solve a problem, solving it by yourself enables you to
learn many more things than you expect. The author is hoping you will try to
tackle the exercises by yourselves. If you have no time to solve them, The author
strongly recommends to check their solutions carefully before proceeding to the
next topic.

Analyses and Proofs. In this book, the author provides details of the proofs
and the analyses of algorithms. Some unfamiliar readers could find some of the
mathematical descriptions difficult. However, they are not beyond the range of
high school mathematics, although some readers may hate “mathematical induc-
tion,” “exponential functions,” or “logarithmic functions.” Although the author
believes that ordinary high school students should be able to follow the main ideas
of algorithms and the pleasure they bring, you may not lie down on your couch to
follow the analyses and proofs. However, the author wants to emphasize that there
exists beauty you cannot taste without such understanding. The reason why the
author does not omit these “tough” parts is that the author would like to invite
you to appreciate this deep beauty beyond the obstacles you will encounter. Each
equation is described in detail, and it is not as hard once you indeed try to follow.

Algorithms are fun. Useful algorithms provide a pleasant feeling much the same
as well-designed puzzles. In this book, the author has included some famous real
puzzles to describe the algorithms. They are quite suitable for explaining the basic
techniques of algorithms, which also show us how to solve these puzzles. Through
learning algorithms, the author hopes you will enjoy acquiring knowledge in such a
pleasant way.

XX, YY, 2016.
Ryuhei Uehara
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CHAPTER 1

Preliminaries

bababababababababababababababab

In this chapter, we learn about (1) machine models, (2) how to measure the
efficiency of algorithms, (3) data structures, (4) notations for the analysis of
algorithms, (5) functions, and (6) graph theory. All of these are very basic,
and we cannot omit any of them when learning about/designing/analyzing
algorithms. However, “basic” does not necessarily mean “easy” or “trivial.”
If you are unable to understand the principle when you read the text for
the first time, you do not need to be overly worried. You can revise it again
when you learn concrete algorithms later. Some notions may require some
concrete examples to ensure proper understanding. The contents of this
section are basic tools for understanding algorithms. Although we need to
know which tools we have available, we do not have to grasp all the detailed
functions of these tools at first. It is not too late to only grasp the principles
and usefulness of the tools when you use them.

What you will learn:� �
• Machine models (Turing machine model, RAM model,

other models)
• Efficiency of algorithms
• Data structures (array, queue, stack)
• Big-O notation
• Polynomial, exponential, logarithmic, harmonic functions
• Basic graph theory� �
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2 1. PRELIMINARIES

1. Machine models

An Algorithm is a method for solving a given problem. Representing how
to solve a problem requires you to define basic operations precisely. That is, an
algorithm is a sequence of basic operations of some machine model you assume.
First, we introduce representative machine models: The Turing machine model,
RAM model, and the other models. When you adopt a simple machine model,
it is easy to consider the computational power of the model. However, because
it has poor or restricted operations, it is hard to design/develop some algorithms.
On the other hand, if you use a more abstract machine model, even though it is
easier to describe an algorithm, you may face a gap between the algorithm and real
computers when you implement it. In order to make a sense of balance, it is a good
idea to review some different machine models. We have to mind the machine model
when we estimate and/or evaluate the efficiency of an algorithm. Sometimes the
efficiency differs depending on the machine model that is assumed.Natural number:

Our natural num-

bers start from 0,

not 1, in the area

of information sci-

ence. “Nonnegative

integers” start from 1.

It is worth mentioning that, currently, every “computer” is a “digital com-
puter,” where all data in it is manipulated in a digital way. That is, all data are
represented by a sequence consisting of 0 and 1. More precisely, all integers, real
numbers, and even irrational numbers are described by a (finite) sequence of 0 and
1 in some way. Each single unit of 0 or 1 is called a bit. For example, a natural
number is represented by a binary system. Namely, the data 0, 1, 2, 3, 4, 5, 6, . . . are
represented in the binary system as 0, 1, 10, 11, 100, 101, 110, . . ..

Exercise 1. Describe the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20 in the binary and the hexadecimal systems. In the
hexadecimal system, 10, 11, 12, 13, 14, and 15 are described by A, B, C, D, E, and
F, respectively. Can you find a relationship between these two systems?

Alan Mathison

Turing(1912-1954):

Turing was a British

mathematician and

computer scientist.

The 1930s were the

times before real

computers, he was the

genius who developed

the notion of a “com-

putation model” that

holds good even in our

day. He was involved

with the birth of

computer, took an

important part in

breaking German

codes during World

War II, and died when

he was only 42 years

old from poisoning by

cyanic acid. He was a

dramatic celebrity in

various ways.

Are there non-digital computers?� �
An ordinary computer is a digital computer based on the binary system. In
a real digital circuit, “1” is distinguished from “0” by voltage. That is, a
point represents “1” if it has a voltage of, say, 5V, and “0” if it has a ground
level voltage, or 0V. This is not inevitable; historically, there were analog
computers based on analog circuits, and trinary computers based on the trinary
system of minus, 0, and plus. However, in the age of the author, all computers
were already digital. Digital circuits are simple, and refrain from making a
noise. Moreover, “1” and “0” can be represented by other simple mechanisms,
including a paper strip (with and without holes), a magnetic disk (N and S
poles), and an optical cable (with and without light). As a result, non-digital
computers have disappeared.� �
1.1. Turing machine model. A Turing machine is the machine model

introduced by Alan Turing in 1936. The structure is very simple because it is a
virtual machine defined to discuss the mechanism of computation mathematically.
It consists of four parts as shown in Figure 1; tape, finite control, head, and
motor.

The tape is one sided, that is, it has a left end, but has no right end. One of
the digits 0, 1, or a blank is written in each cell of the tape. The finite control is in
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Finite Control

Tape for memory

Motor
Read/Write
Head

Figure 1. Turing machine model

the “initial state,” and the head indicates the leftmost cell in the tape. When the
machine is turned on, it moves as follows:

(1) Read the letter c on the tape;
(2) Following the predetermined rule [movement on the state x with letter c],

• rewrite the letter in the head (or leave it);
• move the head to the right/left by one step (or stay there);
• change the state from x to y;

(3) If the new state is “halt”, it halts; otherwise, go to step 1.
The mechanism is so simple that it seems to be too weak. However, in theory,

every existing computer can be abstracted by this simple model. More precisely, the
typical computer that runs programs from memory is known as a von Neumann-type
computer, and it is known that the computational power of any von Neumann-type
computer is the same as that of a Turing machine. (As a real computer has limited
memory, indeed, we can say that it is weaker than a Turing machine!) This fact
implies that any problem solvable by a real computer is also solvable by a Turing
machine (if you do not mind their computation time). Theory of compu-

tation:

The theory of com-

putation is a sci-

ence that investigates

“computation” itself.

When you define a

set of basic opera-

tions, the set of “com-

putable” functions are

determined by the op-

erations. Then the

set of “uncomputable”

functions is well de-

fined. Diagonaliza-

tion is a basic proof

tool in this area, and

it is strongly related

to Gödel’s Incomplete-

ness Theorem.

Here we introduce an interesting fact. It is known that there exists a problem
that cannot be solved by any computer.

Theorem 1. There exists no algorithm that can determine whether any given
Turing machine with its input will halt or not. That is, this problem, known as the
halting problem, is theoretically unsolvable.

This is one of the basic theorems in the theory of computation, and it is related
to deep but interesting topics including diagonalization and Gödel’s Incompleteness
Theorem. However, we mention this as an interesting fact only because these topics
are not the target of this book (see the references). As a corollary, you cannot design
a universal debugger that determines whether any program will halt or not. Note
that we consider the general case, i.e., “any given program.” In other words, we
may be able to design an almost universal debugger that solves the halting problem
for many cases, but not all cases.

1.2. RAM model. The Turing machine is a theoretical and virtual machine
model, and it is useful when we discuss the theoretical limit of computational power.
However, it is too restricted or too weak to consider algorithms on it. For example,
it does not have basic mathematical operations such as addition and subtraction.
Therefore we usually use a RAM (Random Access Machine) model when we
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Finite Control

Program Couner: PC

Address Data

0000 0000
0000 0001
0000 0010
0000 0011
0000 0100

1111 1110
1111 1111

0101 0101
0000 0000
1111 1111
1100 1100
1100 0011

0000 1111
1111 0000

Registers

Word

Figure 2. RAM model

Finite Control

Program Counter: PC

Address Data

0000 0000
0000 0001
0000 0010
0000 0011
0000 0100

1111 1110
1111 1111

0101 0101
0000 0000
1111 1111
1100 1100
1100 0011

0000 1111
1111 0000

Registers

n words

log n bitslog n bits

Figure 3. Relationships among memory size, address, and word
size of the RAM model. Let us assume that the memory can store
n data. In this case, to indicate all the data, log n bits are required.
Therefore, it is convenient when a word consists of log n bits. That
is, a “k bit CPU” usually uses k bits as one word, which means
that its memory can store 2k words.

discuss practical algorithms. A RAM model consists of finite control, which cor-
responds to the CPU (Central Processing Unit), and memory (see Figure 2).
Here we describe the details of these two elements.

Memory. Real computers keep their data in the cache in the CPU, memory,
and external memory such as a hard disk drive or DVD. Such storage is modeled
by memory in the RAM model. Each memory unit stores a word. Data exchange
between finite control and memory occurs as one word per unit time. Finite control
uses an address of a word to specify it. For example, finite control reads a word
from the memory of address 0, and writes it into the memory of address 100.

Usually, in a CPU, the number of bits in a word is the same as the number of
bits of the address in the memory (Figure 3). This is because each address itself
can be dealt with as data. We sometimes say that your PC contains a 64-bit CPU.
This number indicates the size of a word and the size of an address. For example,
in a 64-bit CPU, one word consists of 64 bits, and one address can be represented
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from 00 . . . 0︸ ︷︷ ︸
64

to 11 . . . 1︸ ︷︷ ︸
64

, which indicates one of 264 ≈ 1.8×1019 different data. That

is, when we refer to a RAM model with a 64-bit CPU, it refers to a word with 64
bits on each clock, and its memory can store 264 words in total.

Finite control. The finite control unit reads the word in a memory, applies an
operation to the word, and writes the resulting word to the memory again (at the
same or different address at which the original word was stored). A computation is
the repetition of this sequence. We focus on more details relating to real CPUs. A
CPU has some special memory units that consist of one program counter(PC),
and several registers. When a computer is turned on, the contents of the PC and
registers are initialized by 0. Then the CPU repeats the following operations:

(1) It reads the content X at the address PC to a register.
(2) It applies an operation Y according to the value of X.
(3) It increments the value of PC by 1.

The basic principle of any computer is described by these three steps. That is, the
CPU reads the memory, applies a basic operation to the data, and proceeds to the
next memory step by step. Typically, X is a word consisting of 64 bits. Therefore,
we have 264 different patterns. For each of these many patterns, some operation
Y corresponds to X, which is designed on the CPU. If the CPU is available on
the market, the operations are standardized and published by the manufacturer.
(Incidentally, some geeks may remember coding rules in the period of 8-bit CPUs,
which only has 28 = 256 different patterns!) Usually, the basic operations on the
RAM model can be classified into three groups as follows.

Substitution: For a given address, there is data at the address. This oper-
ation gives and takes between the data and a register. For example, when
data at address A is written into a memory at address B, the CPU first
reads the data at address A into a register, and next writes the data in the
register into the memory at address B. Similar substitution operations are
applied when the CPU has to clear some data at address A by replacing
it with zero.

Calculation: This operation performs a calculation between two data val-
ues, and puts the result into a register. The two data values come from
a register or memory cell. Typically, the CPU reads data from a memory
cell, applies some calculation (e.g., addition) to the data and some regis-
ter, and writes the resulting data into another register. Although possible
calculations differ according to the CPU, some simple mathematical op-
erations can be performed.

Comparison and branch: This operation overwrites the PC if a register
satisfies some condition. Typically, it overwrites the PC if the value of
a specified register is zero. If the condition is not satisfied, the value of
PC is not changed, and hence the next operation will be performed in the
next step. On the other hand, if the condition is satisfied, the value of
the PC is changed. In this case, the CPU changes the “next address” to
be read, that is, the CPU can jump to an address “far” from the current
address. This mechanism allows us to use “random access memory.”

In the early years, CPU allowed very limited operations. Interestingly, this was
sufficient in a sense. That is, theoretically, the following theorem is known.
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Theorem 2. We can compute any function if we have the following set of
operations: (1) increase the value of a register by one, (2) decrease the value of a
register by one, and (3) compare the value of a register with zero, and branch if it
is zero.

Theorem 2 says that we can compute any function if we can design some reason-
able algorithm for the function. In other words, the power of a computer essentially
does not change regardless of the computational mechanism you use. Nevertheless,
the computational model is important. If you use the machine model with the set
of operations in Theorem 2, creating a program is quite difficult. You may need
to write a program to perform the addition of two integers at the first step. Thus,
many advanced operations are prepared as a basic set of operations in recent high-
performance CPUs. Although, it seems that there is a big gap between the set of
operations of the RAM model and real programming languages such as C, Java,
Python, and so on. However, any computer program described by some program-
ming language can be realized on the RAM model by combining the set of simple
operations we already have. For example, we can use the notion of a “variable”
in most programming languages (see Section 3.1 for the details). It can be realized
as follows on the RAM model:

Example 1. The system assigns that “variable A is located at an address 1111
1000” when the program starts. Then, substitution to variable A is equivalent to
substitution to the address 1111 1000. If the program has to read the value in
variable A, it accesses the memory with the address 1111 1000.

Using this “variable”, we can realize the usual substitution in a program. A
typical example is as follows.

Example 2. In many programs, “add 1 to some variable A” frequently appears.
In this book, we will denote it by

A← A + 1;

When a program based on a RAM model runs this statement, it is processed as
follows (Figure 4): We suppose that the variable A is written at the address 1111
1000. (Of course, this is an example, which does not correspond to a concrete CPU
on the market; rather, this is an example of so-called “assembly language” or
“machine language.”)

(1) When it is turned on, the CPU reads the contents at the address PC (=0)
in the memory. Then it finds the data “1010 1010” (Figure 4(1)). Fol-
lowing the manual of the CPU, the word “1010 1010” means the sequence
of three operations:
(a) Read the word W at the next address (PC + 1), and read the data at

address W to the register 1.
(b) Read the word W ′ at the address following the next address (PC +2),

and add it to register 1.
(c) Write the contents of register 1 to the address following the address

after the next address (PC + 3).
(Here the value of PC is incremented by 1.)

(2) The CPU reads the address PC (=1), and obtains the data (=1111 1000).
Then it checks the address 1111 1000, and finds the data (=0000 1010).
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PC=0000 0011

Register 1=0000 1011

PC=0000 0010

Register 1=0000 1011

有限制御部

PC=0000 0001

Register 1=0000 1010

Finite Control

PC=0000 0000
Address Data

0000 0000
0000 0001
0000 0010
0000 0011
0000 0100

1111 1000

1111 1110
1111 1111

1010 1010
1111 1000
0000 0001
1111 1000
1010 1010

0000 1111
1111 0000

Register 1=0000 0000

0000 1010 0000 1011

(1)

(2)

(3)

(4)

(5)

Figure 4. The sequence of statements performed on the RAM
model: (1) When it is turned on, (2) it reads the contents at address
1111 1000 to register 1, (3) it adds 0000 0001 to the contents of
register 1, (4) it writes the contents in register 1 to the memory
at address 1111 1000, and (5) The contents 0000 1010 at address
1111 1000 are replaced by 0000 1011.

Thus, it copies to register 1 (Figure 4(2)). (Here the value of PC is
incremented by 1.)

(3) The CPU reads the address PC (=10), and obtains the data (=0000 0001).
It adds the data 0000 0001 to register 1, then the contents of register 1 are
changed to 0000 1011 (Figure 4(3)). (Here the value of PC is incremented
by 1.)

(4) The CPU reads the address PC (=11), and obtains the data (=1111 1000)
(Figure 4(4)). Thus, it writes the value of the register 1 (=0000 1011) to
the memory at address 1111 1000 (Figure 4(5)). (Here the value of PC
is incremented by 1.)

The CPU performs repetitions in a similar way. That is, it increments PC by 1,
by reading the data at address PC, and so on.

We note that the PC always indicates “the next address the CPU will read.”
Thus, when a program updates the value of PC itself, the program will “jump”
to the other address. By this function, we can realize comparison and branching.
That is, we can change the behavior of the program.

As already mentioned, each statement of a standard CPU is quite simple and
limited. However, a combination of many simple statements can perform an algo-
rithm described by a high-level programming language such as C, Java, Haskell, and
Prolog. An algorithm written in a high-level programming language is translated
to machine language, which is a sequence of simple statements defined on the CPU,
by a compiler of the high-level programming language. On your computer, you Compiler:

We usually “compile”

a computer program,

written in a text file,

into an executable bi-

nary file on a com-

puter. The com-

piler program reads

the computer program

in a text file, and ex-

changes it into the bi-

nary file that is writ-

ten in a sequence of

operations readable by

the computer system.

That is, when we write

a program, the pro-

gram itself is usually

different from the real

program that runs on

your system.

sometimes have an “executable file” with a “source file”; the simple statements are
written in the executable file, which is readable by your computer, whereas human
readable statements are written in the source file (in the high-level programming
language). In this book, each algorithm is written in a virtual high-level procedural
programming language similar to C and Java (in a more natural language style).



8 1. PRELIMINARIES

However, these algorithms can eventually be performed on a simple RAM model
machine.

Real computers are...� �
In this book, we simplify the model to allow for easy understanding. In some
real computers, the size of a word may differ from the size of an address. More-
over, we ignore the details of memory. For example, semiconductor memory
and DVD are “memory,” although we usually distinguish them according to
their price, speed, size, and other properties.� �
1.3. Other machine models. As seen already, computers use digital data

represented by binary numbers. However, users cannot recognize this at a glance.
For example, you can use irrational numbers such as

√
2 = 1.4142 . . ., π = 3.141592 . . .,

and trigonometric functions such as sin and cos. You also can compute any function
such as eπ, even if you do not know how to compute it. Moreover, your computer
can process voice and movie data, which is not numerical data. There exists a big
gap between such data and the binary system, and it is not clear as to how to
fill this gap. In real computers, representing such complicated data in the simple
binary system is very problematic, as is operating and computing between these
data in the binary system. It is a challenging problem how to deal with the “com-
putational error” resulting from this representation. However, such a numerical
computation is beyond the scope of this book.

In theoretical computer science, there is a research area known as computa-
tional geometry, in which researchers consider how to solve geometric problems
on a computer. In this active area, when they consider some algorithms, the repre-
sentations of real numbers and the steps required for computing trigonometry are
not their main issues. Therefore, such “trivial” issues are considered in a black box.
That is, when they consider the complexity of their algorithms, they assume the
following implicitly:

• Each data element has infinite accuracy, and it can be written and read
in one step in one memory cell.
• Each “basic mathematical function” can be computed in one step with

infinite accuracy.

In other words, they use the abstract machine model on one level higher than the
RAM model and Turing machine model. When you implement the algorithms
on this machine model onto a real computer, you have to handle computation
errors because any real computer has limited memories. Because the set of basic
mathematical functions covers different functions depending on the context, you
sometimes have to provide for the implementation of the operations and take care
of their execution time.

Lately, new computation frameworks have been introduced and investigated.
For example, quantum computer is a computation model based on quantum
mechanics, and DNA computer is a computation model based on the chemical
reactions of DNA (or string of amino acids). In these models, a computer consists of
different elements and a mechanism to solve some specific problems more efficiently
than ordinary computers.
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In this book, we deal with basic problems on ordinary digital computers. We
adopt the standard RAM model, with each data element being an integer repre-
sented in the binary system. Usually, each data element is a natural number, and
sometimes it is a negative number, and we do not deal with real numbers and irra-
tional numbers. In other words, we do not consider (1) how can we represent data,
(2) how can we compute a basic mathematical operation, and (3) computation er-
rors that occur during implementation. When we describe an algorithm, we do not
suppose any specific computer language, and use free format to make it easy to
understand the algorithm itself.

2. Efficiency of algorithm

Even for the same problem, efficiency differs considerably depending on the
algorithms. Of course, efficiency depends on the programming language, coding
method, and computer system in general. Moreover, the programmer’s skill also
has influence. However, as mentioned in the Introduction, the choice of an algorithm
is quite influential. Especially, the more the amount of data that is given, the more
the difference becomes apparent. Now, what is “the efficiency of a computation”?
The answer is the resources required to perform the computation. More precisely,
time and space required to compute. These terms are known as time complexity
and space complexity in the area of computational complexity. In general, time
complexity tends to be considered. Time complexity is the number of steps required
for a computation, but this depends on the computation model. In this section, we
first observe how to evaluate the complexity of each machine model, and discuss
the general framework.

2.1. Evaluation of algorithms on Turing machine model. It is simple
to evaluate efficiency on the Turing machine model. As seen in section 1.1, the
Turing machine is simple, and repeats basic operations. We assume that each basic
operation (reading/writing a letter on the tape, moving the head, and changing its
state) takes one unit of time. Therefore, for a given input, its time complexity is
defined by the number of times the loop is repeated, and its space complexity if
defined by the number of checked cells on the tape.

2.2. Evaluation of algorithms on RAM model. In the RAM model, its
time complexity is defined by the number of times the program counter PC is
updated. Here we need to mention two points.

Time to access memory. In the RAM model, one data element in any memory
cell can be read/written in one unit of time. This is the reason why this machine
model is known as “Random Access.” In a Turing machine, if it is necessary to read
a data element located far from the current head position, it takes time because the
machine has to move the head one by one. On the other hand, this is not the case
for the RAM model machine. When the address of the data is given, the machine
can read or write to the address in one step.

One unit of memory. The RAM model deals with the data in one word in one
step. If it has n words in memory, to access each of them requires log n bits to
access it uniquely. (If you are not familiar with the function log n, see Section 5 for
the details.) It is reasonable and convenient to assume that one word uses log n bits
in the RAM model, and in fact, real CPUs almost follow this rule. For example,
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if the CPU in your laptop is said to be a “64-bit CPU”, one word consists of 64
bits, and the machine can contain 264 words in its memory; thus we adopt this
definition. That is, in our RAM model, “one word” means “log n bits,” where n is
the number of memory cells. Our RAM model can read or write one word in one
step. On the Turing machine, one bit is a unit. Therefore, some algorithms seem
to run log n times faster on the RAM model than on the Turing machine model.

Exercise 2. Assume that our RAM model has n words in its memory.
Then how many bits are in this memory? In that case, how many different oper-
ations can the CPU have? Calculate the number of bits in each RAM model for
n = 65536, n = 264, and n = 2k.

2.3. Evaluation of algorithms on other models. When some machine
model is more abstract than the Turing machine model or RAM model is adopted,
you can read/write a real number in a unit time with one unit memory cell, and
use mathematical operations such as power and trigonometry, for which it is not
necessarily clear how to compute them efficiently. In such a model, we measure
the efficiency of an algorithm by the number of “basic operations.” The set of
basic operations can be changed in the context; however, they usually involve read-
ing/writing data, operations on one or two data values, and conditional branches.

When you consider some algorithms on such an abstract model, it is not a good
idea to be unconcerned about what you eliminate from your model to simplify it.
For example, by using the idea that you can pack data of any length into a word,
you may use a word to represent complex matters to apparently build a “fast”
algorithm. However, the algorithm may not run efficiently on a real computer when
you implement it. Therefore, your choice of the machine model should be reasonable
unless it warrants some special case; for example, when you are investigating the
properties of the model itself.

2.4. Computational complexity in the worst case. An algorithm com-
putes some output from its input in general. The resources required for the com-
putation are known as computational complexity. Usually, we consider two
computational complexities; time complexity is the number of steps required for
the computation, and space complexity is the number of words (or bits in some
case) required for the computation. (To be precise, it is safe to measure the space
complexity in bits, although we sometimes measure this in words to simplify the
argument. In this case, we have to concern ourselves with the computation model.)

We have considered the computational complexity of a program running on a
computer for some specific input x. More precisely, we first fix the machine model
and a program that runs on the machine, and then give some input x. Then, its time
complexity is given by the number of steps, and space complexity is given by the
number of memory cells. However, such an evaluation is too detailed in general.
For example, suppose we want to compare two algorithms A and B. Then, we
decide which machine model to use, and implement the two algorithms on it as
programs, say PA and PB . (Here we distinguish an algorithm from a program. An
algorithm is a description of how to solve a problem, and it is independent from the
machine model. In contrast, a program is written in some programming language
(such as C, Java, or Python). That is, a program is a description of the algorithm,
and depends on the machine and the language.) However, it is not a good idea to
compare them for every input x. Sometimes A runs faster than B, but B may run



3. DATA STRUCTURES 11

faster more often. Thus, we asymptotically compare the behavior of two algorithms
for “general inputs.” However, it is not easy to capture the behavior for infinitely
many different inputs. Therefore, we measure the computational complexity of an
algorithm by the worst case scenario for each length n of input. For each length
n, we have 2n different inputs from 000 . . . 0 to 111 . . . 1. Then we take the worst
computation time and the worst computation space for all of the inputs of length
n. Now, we can define two functions t(n) and s(n) to measure these computational
complexities. More precisely, the time complexity t(n) of an algorithm A is defined
as follows:

Time complexity of an algorithm A:
Let PA be a program that realizes algorithm A. Then, the time complexity t(n)
of the algorithm A is defined by the longest computation steps of PA under all
possible inputs x of length n.

Here we note that there is no clear distinction between algorithm A and program
PA. In this step, we consider that there are a few gaps between them from the
viewpoint of time complexity. We can define the space complexity s(n) of algorithm
A in a similar way. Now we can consider the computational complexity of algorithm
A. For example, for the time complexities of two algorithms A and B, say tA(n)
and tB(n), if we have tA(n) < tB(n) for every n, we say that algorithm A is faster
than B.

The notion guarantees that it is sufficient to complete the computation even
if we prepare these computational resources for the worst case. In other words,
the computation will not fail for any input. Namely, this approach is based on
pessimism. From the viewpoint of theoretical computer science, it is the standard
approach because it is required to work well in any of the cases including the worst
case. For example, another possible approach could be “average case” complexity.
However, in general, this is much more difficult because we need the distribution
of the input to compute the average case complexity. Of course, such a random-
ization would proceed well in some cases. Some randomized algorithms and their
analyses will be discussed in Section 3.4. A typical randomized algorithm is that
known as quick sort, which is used quite widely in real computers. The quick sort
is an interesting example in the sense that it is not only used widely, but also not
difficult to analyze.

3. Data structures

We next turn to the topic of data structures. Data structures continue to
be one of the major active research areas. In theoretical computer science, many
researchers investigate and develop fine data structures to solve some problems
more efficiently, smarter, and simpler. However, in this textbook, we only use the
most basic and simplest data structure known as an “array.” However, if we restrict
ourselves to only using arrays, the descriptions of algorithms become unnecessarily
complicated. Therefore, we will introduce “multi-dimensional array,” “queue,” and
“stack” as extensions of the notion of arrays. They can be implemented by using
an array, and we will describe them later.

3.1. Variable. In an ordinary computer, as shown in the RAM model, there
is a series of memory cells. They are organized and each cell consists of a word,
which is a collection of bits. Each cell is identified by a distinct address. However,
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when you write a program, it is not a good approach to identify these addresses
directly. The program will not be readable, and it has no portability. Therefore,
instead of identifying an address directly, we usually identify a memory cell by some
readable name. This alphabetical name is known as a variable. That is, you can
use your favorite name to identify and access your data. For example, you can
use the variable A to read an integer 1, or another variable S to check whether it
remembers the letter “A.”

Usually, a variable has its own type in the form of an attribute. Typically,
there are variables of the type integers, real numbers, strings, and so on. This type
corresponds to the rule of binary encoding. That is, every datum is represented by
a binary string consisting of a sequence of 0 and 1, and the rule of representation
is defined according to the type. For example, when variable A records an integer
1, concretely, the binary data 00000001 is stored in the binary system, and when
another variable B records a character 1, the binary data 00110001 is stored in
it according to the ASCII encoding rule. The encoding rules are standardized by
industrial standards, and hence we can exchange data between different computers
on the Web.

ASCII code and Unicode� �
Essentially, the integer 1 and the letter A are represented by binary data, that
is, a sequence of 0 and 1. Usually, an integer is represented in the binary system;
for example, a binary string 00000001 represents the integer 1, from where
we count upwards as 00000001, 00000010, 00000011, 00000100, 00000101, . . ..
That is, 00000101 in the binary system represents the integer 5. On the other
hand, letters are represented by ASCII code, which is the standard rule. For
example, the letter “A” is represented by 01101001, and “a” is represented by
10010111. The 8-bit ASCII code corresponding to 256 characters is provided
in a table. Therefore, 8-bit data can represent 256 letters in total. Every letter
used in the world can be represented by a new standard known as Unicode,
which was enacted in the 1980s. However, real world is not as simple. Before
Unicode, for example, we had three different coding rules in Japan, and they
are still active. Such a standard is meaningless unless many people use it.� �
3.2. Array. When we refer to data processed by computer, each datum is

recorded in a memory cell, and we identify it by a variable name. To do that
without confusion, we have to consider different names for each data. However, it
is not that easy. Suppose you are a teacher who has to process the mathematics
examination scores of one hundred students. It is not realistic to name each datum
in this case. What happens if you have other scores in the next semester, and
what if you have another course of programming for these students? How can we
compute an average score for these one hundred students? We solve these tasks by
using a set of variables known as an array. This idea is similar to a progression,
or a sequence of numbers, in mathematics. For example, we sometimes consider a
progression such as a0 = 0, a1 = 1, a2 = 1, a3 = 2, a4 = 3, and so on. In this case,
the progression is identified by the letter a, and the ith number in it is identified by
the index i, which is the subscript naming the progression. That is, even if we have
the same name a, the numbers are different if they have different indices. Thus, the
notion of an array is the same as that of a progression. We name a set of variables,
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and identify each of them by its index. In a progression, we usually write a1, a2,
but we denote an array as a[1], a[2]. That is, a[1] is the 1st element of array a,
and a[2] is the second element of array a. In a real computer (or even in the RAM
model), the realization of an array is simple; the computer provides a sequence
of memory cells, and names the area by the array name, with a[i] indicating the
ith element of this memory area. For example, we assume that the examination
scores of a hundred students are stored in the array named Score. That is, their
scores are stored from Score[1] to Score[100]. For short, hereafter, we will say that
“we assume that each examination score is stored in the array Score[].” Now we How to write an ar-

ray:

In this book, an array

name is denoted with

[]. That is, if a vari-

able name is denoted

with [], this is an ar-

ray.

turn to the first algorithm in this book. The following algorithm Average computes
the average of the examination scores Score[] of n students. That is, calling the
algorithm Average in the form of “Average(Score, 100),” enables us to compute the
average of one hundred examination scores of one hundred students, where Score[i]
already records the examination score of the ith student.

Algorithm 1：Average(S, n) computes the average score of n scores.
Input ：S[]: array of score data, n: the number of scores
Output ：Average score

1 x← 0;

2 for i← 1, 2, . . . , n do
3 x← x + S[i];

4 end

5 output x/n;

We familiarize ourselves with the description of algorithms in this book by
looking closely at this algorithm. First, every algorithm has its own name, and
some parameters are assigned to the algorithm. In Average(S, n), “Average” is
the name of this algorithm, and S and n are its parameters. When we call this
algorithm in the form of “Average(Score, 100),” the array Score and an integer 100
are provided as parameters of this algorithm. Then, the parameter S indicates the
array Score. That is, in this algorithm, the parameter S is referred to, the array
Score is accessed by the reference. On the other hand, when the parameter n is
referred to, the value 100 is obtained. In the next line, Input, we describe the
type of the input, and the contents of the output are described in the line Output.
Then the body of the algorithm follows. The numbers on the left are labels to
be referred to in the text. The steps in the algorithm are usually performed from
top to bottom; however, some control statements can change this flow. In this
algorithm Average, the for statement from line 2 to line 4 is the control statement,
and it repeats the statement at line 3 for each i = 1, 2, . . . .n, after which line 5
is executed and the program halts. A semicolon (;) is used as delimiter in many
programming languages, and also in this book.

Next, we turn to the contents of this algorithm. In line 1, the algorithm per-
forms a substitution operation. Here it prepares a new variable x at some address
in a memory cell, and initializes this cell by 0. In line 2, a new variable i is prepared,
and line 3 is performed for each case of i = 1, i = 2, i = 3, . . ., i = n. In line 3,
variable x is updated by the summation of variable x and the ith element of the
array S. More precisely,

• First, x = 0 by the initialization in line 1.
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• When i = 1, x is updated by the summation of x and S[1], which makes
x = S[1].
• When i = 2, x = S[1] is updated by the summation of x and S[2], and

hence we obtain x = S[1] + S[2].
• When i = 3, S[3] is added to x = S[1] + S[2] and substituted to x,

therefore, we have x = S[1] + S[2] + S[3].
In the same manner, after the case i = n, we finally obtain x = S[1]+S[2]+S[3]+
· · · + S[n]. Lastly, the algorithm outputs the value divided by n = 100, which is
the average, and halts.

Exercise 3. Consider the following algorithm SW(x, y). This algorithm
performs three substitutions for two variables x and y, and outputs the results.
Explain what this algorithm executes. What is the purpose of this algorithm?

Algorithm 2：Algorithm SW(x, y) operates two variables x and y.
Input ：Two data x and y
Output ：Two processed x and y

1 x← x + y;

2 y ← x− y;

3 x← x− y;

4 output x and y;

Algorithm and its Implementation. When you try to run some algorithms in
this book by writing some programming language on your system, some problems
may occur, which the author does not mention in this book. For example, consider
the implementation of algorithm Average on a real system. When n = 0, the
system will output an error of “division by zero” in line 5; therefore, you need to
be careful of this case. The two variables i and n could be natural numbers, but
the last value obtained by x/n should be computed as a real number. In this book,
we do not deal with the details of such “trivial matters” from the viewpoint of an
algorithm; however, when you implement an algorithm, you have to remember to
consider these issues.

Reference of variables. In this textbook, we do not deal with the details of the
mechanism of “parameters.” We have to consider what happens if you substitute
some value into the parameter S[i] in the algorithm Average(S, n). This time, we
have two cases; either Score[i] itself is updated or not. If S[] is a copy of Score[],
the value of Score[i] is not changed even if S[i] is updated. In other words, when
you use the algorithm, you have two choices: one is to provide the data itself, and
the other is to provide a copy of the data. In the latter case, the copy is only used in
the algorithm, and does not influence what happens outside of the algorithm. After
executing the algorithm, the copy is discarded, and the memory area allocated to
it is released. In most programming languages, we can use both of these ways, and
we have to choose one of them.

Subroutines and functions. As shown for Average(S, n), in general, an al-
gorithm usually computes some function, outputs results, and halts. However,
when the algorithm becomes long, it becomes unreadable, and difficult to main-
tain. Therefore, we divide a complex computation into some computational units
according to the tasks they perform. For example, when you design a system for
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maintaining students’ scores, “taking an average of scores” can be a computational
unit, “taking a summation of small tests and examinations for a student” can be
a unit, and “rearranging students according to their scores” can be another. Such
a unit is referred to as a subroutine. For example, when we have two arrays, A[]
containing a hundred score data and B[] a thousand, we can compute their two
averages as follows:

Algorithm 3：PrintAve2(A, B) outputs two averages of two arrays.
Input ：Two arrays A[] of 100 data and B[] of 1000 data
Output ：Each average

1 output “The average of the array A is”;

2 Average(A, 100);

3 output “The average of the array B is”;

4 Average(B, 1000);

Suppose we only need the better of the two averages of A[] and B[]. In this case,
we cannot use Average(S, n) as it is. Each Average(S, n) simply outputs the average
for a given array, and the algorithm cannot process these two averages at once. In
this case, it is useful if a subroutine “returns” its computational result. That is,
when some algorithm “calls” a subroutine, it is useful that the subroutine returns
its computation result for the algorithm to use. In fact, we can use subroutines in
this way, and this is a rather standard approach. We call this subroutine function. Subroutine and

Function:

In current program-

ming languages, it is

popular that “every-

thing is function.” In

these languages, we

only call functions,

and a subroutine is

considered as a special

function that returns

nothing.

For example, the last line of the algorithm Average

5 output x/n;

is replaced by

5 return x/n;

Then, the main algorithm calls this function, and uses the returned value by sub-
stitution. Typically, it can be written as follows.

Algorithm 4：PrintAve1(A,B) outputs the better one of two averages of two
arrays A and B.

Input ：Two arrays A[] of 100 data and B[] of 1000 data
Output ：Better average

1 a←Average(A, 100);

2 b←Average(B, 1000);

3 if a > b then
4 output a;

5 else
6 output b;

7 end

The set consisting of if, then, else, and end in lines 3 to 7 are referred to as
the if-statement. The if-statement is written as

if (condition) then
(statements performed when the condition is true)

else
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(statements performed when the condition is false)
end

In the above algorithm, the statement does the following: When the value of vari-
able a is greater than the value of b, it outputs the value of a, and otherwise (in
the case of a ≤ b) it outputs the value of b.

It is worth mentioning that, in lines 1 and 2, the statement is written as y =
sin(x) or y = f(x), which are known as functions. As mentioned above, in the major
programming languages, we consider every subroutine to be a function. That is, we
have two kinds of functions that return a single value, and another that returns no
value. We note that any function returns at most one value. If you need a function
that returns two or more values, you need some tricks. One technique is to prepare
a special type of data that contains two or more data values; alternatively, you
could use the parameters updated in the function to return the values.

3.3. Multi-dimensional array. Suppose we want to draw some figures on
the computer screen. Those of you who enjoy programming to create a video game,
have to solve this problem. Then, for example, it is reasonable that each pixel can
be represented as “a point of brightness 100 at coordinate (7, 235).” In this case, it
is natural to use a two-dimensional array such as p[7, 235] = 100. In section 3.2, we
have learnt one dimensional arrays. How can we extend this notion? For example,
when we need a two-dimensional array of size n ×m, it seems to be sufficient to
prepare n ordinary arrays of size m. However, it can be tough to prepare n distinct
arrays and use them one by one. Therefore, we consider how can we realize a two-
dimensional array of size n×m by one large array of size n ·m by splitting it into
m short arrays of the same size. In other words, we realize a two-dimensional array
of size n×m by maintaining the index of one ordinary array of size n ·m.Index of an array:

For humans, it is easy

to see that the in-

dex has the values 1

to n. However, as

with this mapping, it

is sometimes reason-

able to use the values 0

to n− 1. In this book,

we will use both on a

case-by-case basis.

More precisely, we consider a mapping between a two-dimensional array p[i, j]
(0 ≤ i ≤ n − 1, 0 ≤ j ≤ m− 1) of size n×m and an ordinary array a[k] (0 ≤ k ≤
n × m − 1) of size n · m. It seems natural to divide the array a[] into m blocks,
where each block consists of n items. Based on this idea, we can design a mapping
between p[i, j] and a[k] such that k = j × n + i. It may be easy to understand by
considering the integer k on the n-ary system, with the upper “digit” being j, and
the lower “digit” i.

Exercise 4. Show that the corresponding k = j × n + i results in a
one-to-one mapping between p[i, j] and a[k].

Therefore, when you access the virtual two-dimensional array p[i, j], access a[j×
n+i] automatically instead. Some readers may consider that such an “automation”
should be done by computer. It is true. Most major programming languages
support such multi-dimensional arrays in their standards, and they process these
arrays using ordinary arrays in the background in this manner. Hereafter, we will
use multi-dimensional arrays when they are necessary.

Exercise 5. How can we represent a three-dimensional array q[i, j, k]
(0 ≤ i < n, 0 ≤ j < m, 0 ≤ k < `) by an ordinary array a[]?

Tips for implementation. Most programming languages support multi-dimensional
arrays, which are translated into one-dimensional (or ordinary) arrays. On the other
hand, in real computers, memory is used more efficiently when consecutive mem-
ory cells are accessed. This phenomenon mainly comes from a technique known as
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caching. In general, it takes time to access a “large” amount of memory; therefore,
the computer prepares “small and fast” (and expensive) memory, and pre-reads
some blocks from the main large memory. This is known as caching, and this small
and fast memory is known as cache memory. This is one of the major techniques
to construct a faster computer. By this mechanism, when a multi-dimensional ar-
ray is realized by an ordinary array, the efficiency of the program can change the
ordering in which the array is accessed. Oppositely, accessing scattered data in
the large memory could slow down the program because the computer updates its
cache every time. A typical example is the initialization of a two-dimensional array
p[i, j]. We consider the following two implementations:

Algorithm 5：Initialization Init1(p) of two-dimensional array
Input ：Two-dimensional array p[] of size n×m.
Output ：p[] where p[i, j] = 0 for all i and j

1 for i← 0, 1, . . . n− 1 do
2 for j ← 0, 1, . . . , m− 1 do
3 p[i, j]← 0 ; /* i will be changed after j */

4 end

5 end

and

Algorithm 6：Initialization Init2(p) of two-dimensional array
Input ：Two-dimensional array p[] of size n×m.
Output ：p[] where p[i, j] = 0 for all i and j

1 for j ← 0, 1, . . . , m− 1 do
2 for i← 0, 1, . . . n− 1 do
3 p[i, j]← 0 ; /* j will be changed after i */

4 end

5 end

It is easy to see that they have the same efficiency from the viewpoint of a theoretical
model. However, their running times differ on some real computers. (By the way,
the author added some comments between /* and */ in the algorithms. They
are simply comments to aid the reader, and have no meaning in the algorithms.)
When you try programming, know-how such as this is useful. Recent compilers are
so smart that such know-how is sometimes managed by the compilers, which refer
to this as optimization. In that case, both algorithms require the same amount
of time to run (or the resulting binary executable files written in machine language
are the same), and your system is praiseworthy!

3.4. Queues and stacks. Let us imagine that we are forming a line to buy
tickets for a museum. In front of the ticket stand, many people form a line. In this
line, the first person is the first one to receive service. This mechanism is known as
queuing. A queue is one of the basic data structures. The operations required by FIFO:

The property deter-

mining that the first

data will be processed

first is known as FIFO,

which stands for First

In, First Out. We also

show the other notion

of a “stack,” which

is the opposite of a

queue, and is known as

LIFO or FILO. These

stand for Last In, First

Out and First In, Last

Out.

a queue are listed as follows:
• Add new item into Q,
• Take the first element in Q, and remove it from Q, and
• Count the number of elements in Q.

Note that if these three operations are realized for Q, the way they are implemented
does not matter for users.
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Next, let us again imagine that you accumulate unprocessed documents on your
desk (the author of this book does not need to imagine this, because the situation
is real). The documents are piled up on your desk. The bunch of paper crumble to
the touch; if you remove one from the middle of the pile, they will tumble down,
and a great deal of damage will be done. Therefore, you definitely have to take
one from the top. Now we consider this situation from the viewpoint of sheets, in
which case the service will be provided to the last (or latest) sheet first. That is,
the process occurs in the order opposite to that in which they arrived. When data
is processed by a computer, sometimes this opposite ordering (or LIFO) is more
useful than queuing (or FIFO). Thus, this idea has also been adopted as a basic
structure. This structure is known as a stack. Similarly, the operations required
by a stack S are as follows:

• Add new item into S,
• Take the last element in S, and remove it from S, and
• Count the number of elements in S.

The operations are the same as for a queue, with the only different point being the
ordering.

Both queues and stacks are frequently used as basic data structures. In fact,
they are easy to implement by using an array with a few auxiliary variables. Here
we give the details of the implementation. First, we consider the implementation of
a queue Q. We use an array Q (Q[1], . . . , Q[n]) of size n and two variables s and t.
The variable s indicates the starting point of the queue in Q, and the variable t is
the index such that the next item is stored at Q[t]. That is, Q[t] is empty, Q[t− 1]
contains the last item. We initialize s and t as s = 1 and t = 1. Based on this idea,
a naive implementation would be as follows.

Add a new element x into Q: For given x, substitute Q[t]← x, and up-
date t← t + 1.

Take the first element in Q: Return Q[s], and update s← s + 1.
Count the number of elements in Q: The number is given by t− s.

It is not difficult to see that these processes work well in general situations.
However, this naive implementation contains some bugs (errors). That is, they do
not work well in some special cases. Let us consider how we can fix them. There
are three points to consider.

The first is that the algorithm tries to take an element from an empty Q. In
this case, the system should output an error. To check this, when this operation is
applied, check the number of elements in Q beforehand, and output an error if Q
contains the zero element.

The next case to consider is that s > n or t > n. If these cases occur, more
precisely, if s or t become n + 1, we can update the value by 1 instead of n + 1.
Intuitively, by joining two endpoints, we regard the linear array Q as an array of
loop structure (Figure 5). However, we face another problem in this case: we cannot
guarantee the relationship s ≤ t between the head and the tail of the queue any
more. That is, when some data are packed into Q[s], Q[s+1], . . . , Q[n], Q[1], . . . , Q[t]
through the ends of the array, the ordinary relationship s < t turns around and
we have t < s. We can decide whether this occurs by checking the sign of t − s.
Namely, if the number of elements of Q satisfies t − s < 0, it means the data are
packed through the ends of the array. In this case, the number of elements of Q is
given by t− s + n.
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Q[1] Q[n]

Q[1] Q[n]

Q[n]Q[1]

Figure 5. Joining both endpoints of the array, we obtain a loop
data structure.

Exercise 6. When t − s < 0, show that the number of elements in the
queue is equal to t− s + n.

The last case to consider is that there are too many data for the queue. The
extreme case is that all Q[i]s contain data. In this case, “the next index” t indicates
“the top index” s, or t = s. This situation is ambiguous, because we cannot
distinguish it from that in which Q is empty. We simplify this by deciding that the
capacity of this queue is n− 1. That is, we decide that t = s means the number of
elements in Q is zero, thereby preventing the nth data element from being packed
into Q. The last element of Q is useless, but we do not mind it for simplicity. To
be sure, before adding a new item x into Q, the algorithm checks the number of
elements in Q. If x is the nth item, return “error” at this time, and do not add it.
(This error is called overflow.)

Refining our queue with these case analyses enables us to safely use the queue
as a basic data structure. Here we provide an example of the implementation of
our queue. The first subroutine is initialization:

Algorithm 7：Initialization of queue InitQ(n, t, s)
Input ：The size n of queue and two variables t and s
Output ：An array Q as a queue

1 s← 1;

2 t← 1;

3 Allocate an array Q[1], . . . , Q[n] of size n;

Next we turn to the function “sizeof,” which returns the number of elements
in Q. By considering exercise 6, |t− s| < n always holds. Moreover, if t − s ≥ 0,
it provides the number of elements. On the other hand, if t − s < 0, the queue is
stored in Q[s], Q[s+1], . . . , Q[n], Q[1], . . . , Q[t]. In this case, the number of elements
is given by t− s + n. Therefore, we obtain the following implementation:
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Algorithm 8：Function sizeof(Q) that returns the number of elements in Q.
Input ：Queue Q
Output ：The number of elements in Q

1 if t− s ≥ 0 then
2 return t− s;

3 else
4 return t− s + n;

5 end

When a new element x is added into Q, we have to determine whether Q is
full. This is implemented as follows:

Algorithm 9：Function push(Q, x) that adds the new element x into Q.
Input ：Queue Q and element x
Output ：None

1 if sizeof(Q)= n− 1 then
2 output “overflow” and halt;

3 else
4 Q[t]← x;

5 t← t + 1;

6 if t = n + 1 then t← 1;

7 end

Similarly, when we take an element from Q, we have to check whether Q is
empty beforehand. The implementation is shown below:

Algorithm 10：Function pop(Q) that takes the first element from Q and
returns it.

Input ：Queue Q
Output ：The first element y in Q

1 if sizeof(Q)= 0 then
2 output “Queue is empty” and halt;

3 else
4 q ← Q[s];

5 s← s + 1;

6 if s = n + 1 then s← 1;

7 return q;

8 end

Note: In many programming languages, when a function F returns a value, the
control is also returned to the procedure that calls F . In pop(Q), it seems that we
can return the value Q[s] at line 4; however, then we cannot update s in lines 5 and
6. Therefore, we temporally use a new variable q and return it in the last step.

It is easier to implement stack than queue. When using queue, we have to
manage the top element s and the tail element t; however, the top element of a
stack is fixed, thus we do not need to manage it by a variable. More precisely, we
can assume that S[1] is always the top element in the stack S. Therefore, the cyclic
structure in Figure 5 is no longer used. Based on this observation, it is not difficult
to implement stack.

Exercise 7. Implement the stack S.
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Some readers may consider these data structure to be almost the same as the
original one-dimensional array. However, this is not correct. These abstract models
clarify the data properties. In Chapter 4, we will see a good example for using such
data structure.

Next data structure of array?� �
The next aspect of an array is called a “pointer.” If you understand arrays and
pointers properly, you have learned the basics of a data structure. You can
learn any other data structure by yourself. If you have a good understanding
of an array and do not know the pointer, the author strongly recommends to
learn it. Actually, a pointer corresponds to an address of the RAM machine
model. In other words, a pointer points to some other data in a memory cell. If
you can imagine the notion of the RAM model, it is not difficult to understand
the notion of a pointer.� �

4. The big-O notation and related notations

As discussed in Section 2, the computational complexity of an algorithm A is
defined by using a function of the length n as input. Then we consider the worst
case analysis for many variants of inputs (there are 2n different inputs for length n).
Even so, in general, the estimation of an algorithm is difficult. For example, even if
we have an algorithm A whose time complexity fA(n) is fA(n) = 503n3 + 30n2 + 3
if n is odd, and fA(n) = 501n3 + n + 1000 if n is even, what can we conclude
from them? When we estimate and compare the efficiency of algorithms, we have
to say that these detailed numbers have little meaning. Suppose we have another
algorithm B for the same problem that runs in fB(n) = 800n + 12345. In this
situation, for these two algorithms A and B, which is better? Most readers agree
that B is faster in some way. To discuss this intuition more precisely, D. E. Knuth
(see page 49) proposed using the big-O notation. We will adopt this idea in this
book. The key of the big-O notation is that we concentrate on the main factor
of a function by ignoring nonessential details. By this notion, we can discuss and
compare the efficiency of algorithms independent from machine models. We focus
on the asymptotic behavior of algorithms for sufficiently large n. This enables us
to discuss the approximate behavior of an algorithm with confidence.

4.1. Warning. The author dares to give a warning before stating the defini-
tion. The big-O notation is a notation intended as the upper bound of a function.
That is, if an algorithm A solves a problem P in O(n2) time, intuitively, “the time
complexity of algorithm A is bounded above by n2 within a constant factor for any
input of length n.” We need to consider two points in regard to this claim.

• There may exist a faster algorithm than A. That is, to solve problem P ,
while algorithm A solves it in O(n2) time, it may not capture the difficulty
of P . Possibly, P can be solved much easier by some smart ideas.
• This O(n2) provides an upper bound of the time complexity. We obtain

the upper bound O(n2) by analysis of the program that represents A in
some way. However, the program may actually run in time proportional
to n. In this time, our analysis of the algorithm has not been appropriate.
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The first point is not difficult to understand. There may be a gap between
the essential difficulty of the problem and our algorithm, because of the lack of
understanding of some properties of the problem. We provide such an example
in Section 2. Of course, there exist some “optimal” algorithms that cannot be
improved any further in a sense. In Section 3.5, we introduce such interesting
algorithms.

The second point is a situation that requires more consideration. For example,
when you have f(n) = O(n2), even some textbooks may write this as “f(n) is
proportional to n2.” However, this is wrong. Even if you have an algorithm A
that runs in O(n3), and another algorithm B that runs in O(n2), A can be faster
than B when you implement and perform these algorithms. As we will see later,
the notation “O(n3)” indicates that the running time of A can be bounded above
by n3 in a constant factor. In other words, this is simply an upper bound of the
running time that we can prove. For the same reason, for one algorithm, without
modification of the algorithm itself, its running time can be “improved” from O(n3)
to O(n2) by refining its analysis.

When you prefer to say “a function f(n) is proportional to n2” with accuracy,
you should use the notation Θ(n2). In this book, to make the difference clear, we
will introduce O notation, Ω notation, and Θ notation. We also have o notation
and ω notation, but we did not introduce them in this book. However, the O
notation is mainly used. That is, usually we need to know the upper bound of the
computational resources in the worst case. For a novice reader, it is sufficient to
learn the O notation. However it is worth remembering that the O notation only
provides the upper bound of a function.

4.2. Big-O notation. We first give a formal definition of the O notation. Let
g(n) be a function on natural numbers n. Then O(g(n)) is the set of functions
defined as follows.

O notation:

O(g(n)) = {f(n) | there exist some positive constants c and n0,
for all n > n0, 0 ≤ f(n) ≤ cg(n) holds.}

If a function f(n) on natural numbers n belongs to O(g(n)), we denote by
f(n) = O(g(n)).

In this definition, we have some points to consider. First of all, O(g(n)) is a
set of functions. Some readers familiar with mathematics may think “then, should
it be denoted by f(n) ∈ O(g(n))?” This is correct. Some people denote it in this
way; however, they are (unfortunately) the minority. In this textbook, following
the standard manner in this society, the author adopts the style f(n) = O(g(n)).
That is, this “=” is not an equal to symbol in a strict sense. Although we write
3n2 = O(n2), we never write O(n2) = 3n2. This “=” is not symmetrical! This is
not a good manner, which may throw beginners into confusion. However, in this
text book, we adopt the standard manner that is used in this society.

The next point is that we use n0 to avoid finite exceptions. Intuitively, this
n0 means that “we do not take care of finite exceptions up to n0.” For example,
the function f1(n) in Figure 6 varies drastically when n is small, but stabilizes
when n increases. In such a case, our interest focuses on the asymptotic behavior



4. THE BIG-O NOTATION AND RELATED NOTATIONS 23

n0

f1(n)

g(n)

f2(n)

f3(n)

Figure 6. Functions and the big O notation

for sufficiently large n. Therefore, using the constant n0, we ignore the narrow
area bounded by n0. If the behavior of f1(n) can be bounded above by g(n) for
sufficiently large n, we denote it by f1(n) = O(g(n)).

We cannot ignore the constant c. By doing this, we can say that “we do not
take care of the constant factor.” For example, the function f2(n) is obtained from
g(n) by multiplying by a constant, and adding another constant. The philosophy of
the big-O notation is that these “differences” are not essential for the behavior of
functions, and ignorable. This notion can be approximate, in fact, O(g(n)) contains
quite a smaller function than g(n) such as f3(n) in Figure 6.

As learned in Section 1, an algorithm consists of a sequence of basic operations,
and the set of basic operations depends on its machine model. Even in a real
computer, this set differs depending on its CPU. That is, each CPU has its own set
of basic operations designed by the product manufacturer. Therefore, when you
implement an algorithm, its running time depends on your machine. Typically,
when you buy a new computer, you may be surprised that the new computer is
much faster than the old one. To measure, compare, and discuss the efficiency
of algorithms in this situation, we require some framework that is approximate in
terms of “finite exceptions” and “constant factors.”

Exercise 8. For each of the following, prove it if it is correct, or
disprove it otherwise.

(1) 2n + 5 = O(n).
(2) n = O(2n + 5).
(3) n2 = O(n3).
(4) n3 = O(n2).
(5) O(n2) = O(n3).
(6) 5n2 + 3 = O(2n).
(7) f(n) = O(n2) implies f(n) = O(n3).
(8) f(n) = O(n3) implies f(n) = O(n2).
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How to pronounce “f(n) = O(n)”� �
This “O” is simply pronounced “Oh”; thus, the equation can be pronounced
as “ef of en is equal to big-Oh of en.” However, some people also pronounce it
as “ef of en is equal to order en.”� �
4.3. Other notations related to the big-O notation. We next turn to

the other related notations Ω and Θ, which are less frequently used than O. (We
also have the other notations o and ω, which are omitted in this book. See the
references for the details.)

In the broad sense, we call these O, Ω, Θ, o, and ω notations “the big-O
notations.” Namely, the most frequently used is the big-O notation. In this book,
we will use “the big-O notation” that is used both in the broad sense and in the
narrow sense depending on the context.

Ω notation. Let g(n) be a function on natural numbers n. Then Ω(g(n)) is the set
of functions defined as follows (it is pronounced as “big-omega” or simply “omega”).

Ω notation:

Ω(g(n)) = {f(n) | there exist some positive integers c and n0,
for all n > n0, 0 ≤ cg(n) ≤ f(n) holds. }

If a function f(n) on natural numbers n belongs to Ω(g(n)), we denote by
f(n) = Ω(g(n)).

Similar to the O notation, “=” is not a symmetric symbol.
Comparing this with the O notation, the meaning of this Ω notation becomes

clearer. Two of their common properties are summarized as follows:

• We do not take care of finite exceptions under n0.
• We do not mind a constant factor of c.

The difference is cg(n) ≤ f(n), that is, the target function f(n) is bounded from
below by g(n).Trivial lower

bound:

To make sure, the

assumption that “all

data should be read

to solve a problem”

is quite a natural

assumption for most

problems. This lower

bound is sometimes

referred to as a trivial

lower bound.

That is, whereas the O notation is used to provide the upper bound of a func-
tion, the Ω notation is used to provide the lower bound. Therefore, in the context
of computational complexity, the Ω notation is used to show a lower bound of some
resources required to perform an algorithm. Here we give a trivial but important
example. For some problem P with an input of length n, all input data should be
read to solve the problem. Let an algorithm A solve the problem P in tA(n) time.
Then we have tA(n) = Ω(n). That is, essentially, tA(n) cannot be less than n.

In Chapter 3, we will see a more meaningful example of the Ω notation.

Θ notation. Let g(n) be a function on natural numbers n. Then Θ(g(n)) is the
set of functions defined as follows (it is pronounced as “theta”).

Θ notation:
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Θ(g(n)) = {f(n) | there exist some positive constants c1, c2, and n0,
for all n > n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) holds.}

If a function f(n) on natural numbers n belongs to Θ(g(n)), we denote it by
f(n) = Θ(g(n)).

Considering O(g(n)), Ω(g(n)), and Θ(g(n)) as sets of functions, we can observe
the following relationship among them:

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

That is, Θ(g(n)) is an intersection of O(g(n)) and Ω(g(n)).

Exercise 9. Prove the above equation Θ(g(n)) = O(g(n)) ∩ Ω(g(n)).

Checking the O and Ω notations, let us consider the meaning of the equation
f(n) = Θ(g(n)). The following two margins are again available:

• We do not take care of finite exceptions under n0.
• We do not mind a constant factor of c.

Within these margins, f(n) is bounded by g(n) both above and below. That is, we
can consider f(n) to be proportional to g(n). In other words, f(n) is essentially
the same function as g(n) within a constant factor with finite exceptions.

There are some algorithms of which the behavior has been completely analyzed,
and their running times are already known. For these algorithms, their efficiency
can be represented in Θ notation with their accuracy independent of machine mod-
els. Some examples are provided in Chapter 3.

5. Polynomial, exponential, and logarithmic functions

Let A be an algorithm for some problem, and assume that its running time
fA(n) is fA(n) = 501n3 +n+1000 for any input of length n. When we measure the
efficiency of an algorithm, discussion about the detailed coefficients is not produc-
tive in general. Even if we “improve” the algorithm and obtain a new complicated
algorithm A′ that runs in fA′(n) = 300n3 + 5n, it may be better to update the
computer and perform A on it. The real running time of A may vary depending on
the programmer’s skill and the machine model.

Therefore, we usually estimate the running time of an algorithm A by using the
O notation introduced in Section 4 as fA(n) = O(n3). Once you become familiar
with algorithm design, it may not be rare that you discover some redundant process,
refine it, and obtain an algorithm that is, say, n times faster. Therefore, from this
viewpoint, even if you improve your algorithm from 501n3 to 300n3, it is unlikely
that this essentially improves the algorithm.

When we evaluate the computational complexity of some problems, we fre-
quently take a global view of the difficulty. If you like to solve some specific prob-
lem, in most cases, the problem has some solution, and moreover, even choices
are also given. In this case, how about the idea of “checking all possibilities”?
That is, from the initial state, checking all possible choices, we eventually reach
the solution, don’t we? In most cases, this naive intuition is theoretically correct.
However, theoretically it is true. For example, consider a well-known popular game
such as Shogi. The board is fixed. Its size is 9 × 9, that is, we have at most 81
choices at each step. The number and kinds of pieces are also fixed. The rules of
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the game are also strictly designed. Then, theoretically, if both players play with
their best possible strategies, the game is decided by one of three outcomes: the
first player always wins, the second player always wins, or the game is tie. That
is, the end of the game has already been decided, even though we do not yet know
which is the true end. We would be able to reach the true outcome by checking all
possible choices. A program for checking all choices would not seem difficult to a
skillful programmer. However, so far, nobody knows the true outcome for a game
of chess, Shogi, Go, and so on. This is because such a program never completes its
computation. Even in the case of the board consisting of only 9 × 9 squares, the
number of choices runs into astronomical numbers, and the computation cannot be
completed in a realistic time.

Here we again consider the fact that the Shogi board only has a size of 81.
When we consider current computers, which have gigabytes of memory and run at
gigahertz, the number 81 seems to be quite small compared to these specifications.
Nevertheless, why does the algorithm never complete its computation? The key is
a phenomenon known as “exponential explosion.” To understand this phenomenon
with related ideas, we can partition the functions in this book into three categories:
polynomial functions, exponential functions, and logarithmic functions. When we
consider the efficiency of an algorithm (from the viewpoints of both time and mem-
ory), at the first step, it is quite important to have a clear view as to the category
of the running time and memory used. We will describe these three categories of
functions with some intuitive image.

Polynomial function. For example, a quadratic function is a typical polynomial
function. It is the most natural “function” people imagine when they say function.
In general, a polynomial function is defined as follows.

Polynomial function:
A polynomial function is given in the following form:

f(x) = adx
d + ad−1x

d−1 + · · ·+ a3x
3 + a2x

2 + a1x + a0,

where a0, a1, . . . , ad are constant numbers independent of x, and d is a natural
number. More precisely, d is the maximum number with ad 6= 0, and d is
referred to as the degree of this function f(x).

In terms of computational complexity, if any computational resource is not
included in this class, it is said to be intractable. That is, even if the problem has
a simple solution (e.g., 0/1 or Yes/No), and we can build a program for it (e.g., by
exhaustive check of all combinations), the intractable problem cannot be solved in
practical time. Here we note that this sentence contains a double negative; that
is, any problem not included in this class cannot be solved in practical time. We
never say that all problems in this class are tractable. This does not aim to confuse
readers. There is a gray zone between tractable and intractable. For example,
suppose you succeed in developing an algorithm A that requires fA(n) = Θ(nd) to
run. Even if fA(n) is a polynomial function, it can be quite difficult to obtain a
solution in practical time when d is quite large, for example 1000 or 20000. From a
practical viewpoint, a reasonable value of d is not so large, say, d = 2, 3 or up to 10.
Of course, this “reasonable” is strongly related to the value of n, the specification of
the computer, the skill of programmer, and so on. However, at least, fA(n) cannot
be bounded above by some polynomial function, fA(n) increases drastically when
n becomes large, and the program never halts in a practical time.
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Exercise 10. Let the running time fA(n) of an algorithm A be n50

steps. That is, the algorithm A performs n50 basic operations for any input of size
n to compute the answer. Suppose that the processor of your computer executes
instructions at a clock speed of 10GHz. That is, your computer can perform 10 ×
109 basic operations per second. Compute the value of n such that your computer
performs the algorithm A for an input of size n in a practical time.

Exercise 11. Let us consider algorithms for computing the following poly-
nomial function:

f(x) = a0 + a1x + a2x
2 + + · · ·+ ad−1x

d−1 + adx
d

Suppose that an array a[] stores each coefficient with a[i] = ai, and we want to
compute f(x) for any given x. We first consider a naive algorithm that computes
in the way of a0 + a1 × x + a2 × x× x + · · ·+ ad−1 × x× · · · × x + ad × x× · · · × x
straightforwardly. Then, how many additions and multiplications does the naive
algorithm perform? Next, we transform the equation and use the second algorithm
to perform the following computation:

f(x) = a0 + x× (a1 + x× (a2 + x× (a3 + · · ·+ x× (ad−1 + x× ad) · · · ))).
Then, how many additions and multiplications does the second algorithm perform?

Exponential function. Typically, an exponential function is the xth power of a
constant such as 2x. We introduce a more general form as follows:

Exponential function:
An exponential function is f(x) = cx for some constant c with c > 1.

When we consider the resources of algorithms, as we only consider increasing
functions, we may have c > 1 in general. When c > 1, any exponential function
grows quite rapidly, which is counter-intuitive. This phenomenon is known as
exponential explosion. For example, consider a board game such as Shogi, which
allows us some choices. If we have two choices in every turn, if you try to read
possible situations after ten turns, you will have to check 210 = 2×2×· · ·×2 = 1024
possible cases. (Of course, different choices can imply the same situation, and we
have more choices in general; hence, we have to give more careful consideration
to the real situation.) It may seem that this number of cases is an easy task for
current computers. Anyway, try the following exercise.

Exercise 12. Take a sheet of newspaper. First, fold it in half. Next,
fold it in half again. Repeat the folding until you cannot fold it any more. How
many times can you fold it? Can you fold it beyond ten times? Let the thickness of
the newspaper be 0.1mm. How many times do you have to fold it in half until the
thickness (or height) of the sheet exceeds that of Mt. Fuji (3776m)? Moreover, how
many times do you have to fold it to go beyond the distance between the moon and
Earth (around 38× 104km)?

After solving this exercise, you will find that you can go to the moon just
by folding a sheet of paper relatively “few times”. This “strange incompatibility”
with your intuition is the reason why it is difficult to realize the tremendousness of
exponential functions.

When we design an algorithm for some problem, it is not difficult to develop
an exponential time algorithm in general. The naive idea of “checking all possible
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cases” tends to lead us to an algorithm requiring exponential time. It is a very
important key point to develop a polynomial time algorithm in some way. That
requires us to understand the problem deeply, and, by identifying the nontrivial
properties of the problem one by one enables us to reach more efficient, faster, and
elegant algorithms.

Logarithmic function. We have already seen that exponential functions grow ex-
pansively. When you plot an exponential function y = f(x) on the usual Cartesian
coordinate system, the curve rises rapidly, immediately rising beyond any graph
paper. A logarithmic function is obtained by folding or reflecting some exponential
curve along the 45◦ line y = x.

Logarithmic function:
For an exponential function f(x) = cx, its inverse function g(x) = logc x is a
logarithmic function. We sometimes omit the base and write it as log x when
the base c is 2. When the base c is e = 2.718 · · · , the natural logarithmic
function loge x is denoted by lnx.

Because a logarithmic function is an inverse function of some exponential func-
tion, the logarithmic function y = f(x) grows very slowly even if x becomes quite
large.

For example, when you use 8 bits, you can distinguish 28 = 256 cases, and 16
bits lead us to 216 = 65536 cases. An increase of 1 bit causes the number of dis-
tinguishable cases to double. This rapid increase is the property of an exponential
function. For logarithmic functions, the situation is inverse; even if 65536 cases
were to rapidly increase up to twice as much, i.e., 131072, it is sufficient to add
only 1 bit to the 16-bit information. That is, for the same reason that an exponen-
tial function grows with counterintuitive speed, a logarithmic function grows with
counterintuitive slowness.

Exercise 13. Draw three graphs of f(x) = 2x, f(x) = x, and f(x) =
log x for 1 ≤ x ≤ 20.

l’Hospital’s rule� �
In this book, we conclude that any exponential function f(n) = cn with c > 1
grows much faster than any polynomial function g(n) for sufficiently large n
with intuitive explanation. Precisely, we do not give any formal proof of the
fact g(n) = O(f(n)). For example, we can say that n100 = O(1.01n). However,
unfortunately, its formal and mathematical proof is not so easy. A simple proof
can be performed by using l’Hospital’s rule that is a theorem about differen-
tial functions. By l’Hospital’s rule, for two functions f(n) and g(n) (with some
omitted conditions here), we have limn→∞ f(n)/g(n) = limn→∞ f ′(n)/g′(n).
In our context, we can differentiate any number of times. We can observe that
any polynomial function g(n) = O(nd) for some positive integer d becomes a
constant after differentiating d times. On the other hand, any exponential func-
tion f(n) will still be exponential function after d differentiations. (Typically,
differentiating f(n) = en becomes f ′(n) = en again.) Therefore, for example,
after 100 differentiations of n100/1.01n, we have limn→∞ n100/1.01n = 0, which
implies n100 = O(1.01n).� �
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Figure 7. Card stack problem

5.1. Harmonic number. Analyses of algorithms sometimes leads us to im-
pressive equations. In this section, we demonstrate one of them known as harmonic
number. The definition of the nth harmonic number H(n) is as follows. Harmonic number:

In the wide sense, the

harmonic number is

defined by the sum-

mation of the inverse

of the sequence of

numbers with a com-

mon difference (or the

denominators are a

sequence of numbers

with a common differ-

ence), in the narrow

sense, the simplest se-

quence
P∞

i=1
1
i

is used

to define the harmonic

number.

The nth harmonic number H(n):

H(n) =
n∑

i=1

1
i

=
1
1

+
1
2

+ · · ·+ 1
n

That is, the summation of the first n elements in the harmonic series
∑∞

i=1
1
i

is known as the nth harmonic number, which is denoted by H(n). The harmonic
number has quite a natural form, and it has the following interesting property.

lim
n→∞

(H(n)− lnn) = γ,

where γ is an irrational number γ = 0.57721 . . . known as Euler’s constant. That
is, H(n) is very close to ln n, with quite a small error.

We do not pursue this interesting issue in any detail; rather, we simply use
the useful fact that the nth harmonic number is almost equal to ln n. The
harmonic number is in natural form, and hence it sometimes appears in the analysis
of an algorithm. We will encounter it a few times. Intuitively, the harmonic number
grows quite slowly as n increases, because it is almost ln n.

Card stack problem. Here we will see a typical situation in which the harmonic
number appears. You have quite a number of cards. You would like to stack the
cards on your desk such that the card at the top protrudes beyond the edge of the
desk. Then, how far can you position the card? Intuitively, it seems impossible
to position the topmost card such that the entire card protrudes beyond the desk.
Are you sure about this?

In reality, you have to stack the cards from bottom to top, of course. However,
to simplify the explanation, we reverse the time and first consider the last card. (We
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Card 1

Gravity center of card 1

Card 2

Length 1

Length x2

Gravity center of (card 1 + card 2)

Length 1

Gravity center of card 2

Figure 8. The center of gravity of the top two cards 1 and 2

might consider slipping in a card at the bottom of the stack at each step.) Without
loss of generality, our card has the width 2 and weight 1. Cards are identified by
numbering them as 1, 2, 3, . . . from the top.

Let us consider the card at the top, card 1. We position this card as far as
the edge of the next card, card 2 (Figure 7). At the limit, the center of card 1
is on the edge of card 2. That is, card 1 can be moved beyond half of its length
(or length 1) from card 2. The next step is for positioning card 2. Let x2 be the
length between the center of gravity of these two cards and the right edge of card
2 (Figure 8). Then, at this point the centers of cards 1 and 2 are balanced in a
see-saw manner (distance × weight), that is, they are balanced at the right and left
sides. Therefore, (1− x2)× 1 for the left card 2, and x2× 1 for the right card 1 are
balanced. That is, we have

(1− x2)× 1 = x2 × 1,

and hence x2 = 1/2.
We have to put our heart into the next step for card 3. The center of gravity

of the two cards 1 and 2 lies at 1/2 from the right side of card 2. We consider the
fulcrum that maintains a balance between the right edge of card 3, on top of which
cards 1 and 2 are placed, and the center of card 3. Let x3 be the distance of this
balance point from the right side of card 3. Then, similarly, we have

(1− x3)× 1 = x3 × 2.

Note that we have ×2 on the right hand because we have two cards on the right
side. Solving this, we obtain x3 = 1/3.

We can repeat this process; for the card k, we have k − 1 cards on it. We
consider that the gravity center of these k − 1 cards occurs on the right edge of
card k, and we balance it with the center of card k at the point distance xk from
the right side of card k. Then we have

(1− xk)× 1 = xk × (k − 1),

and obtain xk = 1/k.
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Summarizing, when we stack n cards in this way, the distance of the right edge
of card 1 from the edge of the desk is given by the following equation.

1 +
1
2

+
1
3

+ · · ·+ 1
n

=
n∑

i=1

1
i

We can observe that 1+1/2+1/3 = 11/6 < 2 < 1+1/2+1/3+1/4 = 25/12, which
means that if we stack only four cards neatly, the first card protrudes beyond the
edge of the desk. That is, beneath card 1, we have nothing but cards. Actually, it
is not that easy; however, it is worth trying just for fun (Figure 3 in page 134).

Now we consider the last function
∑n

i=1
1
i . This is exactly the harmonic number

H(n). As we have already seen, the harmonic number H(n) is almost equal to lnn.
Moreover, the function lnn is a monotonically increasing function for n. Therefore,
when you pile up many cards, you can position card 1 as far from the edge of the
desk as you prefer. We must agree that this is counterintuitive. Then, how many
cards do we have to pile up to make the card protrude farther?

Exercise 14. We have already observed that we need four cards to obtain
the distance 2, which is the width of one card. Then how many cards do we need
to increase this distance to 4, which is the width of two cards. How many cards do
we have to prepare to increase this distance to 10 for five cards?

Solving Exercise 14, we realize that it is not as easy to achieve a large distance.
That is, to increase a logarithmic function f(n) to become large, we have to sub-
stitute a very large value into n. This is essentially the same as the exponential
explosion. As an exponential function g(n) increases quite rapidly as n increases,
to increase the size of a logarithmic function f(n), we have to increase the value of
n considerably.

Have curiousness!� �
Theoretically, we can position the first card as far as you prefer by using the
stacking method described in the text. However, if you prefer to obtain a large
distance, we need a very large number of cards, as we have already seen. In
fact, the above discussion with the result H(n) is itself a well-known classic
result in the society of recreational mathematics and puzzles. Then, can we
reduce the number of cards to obtain some distance? In other words, is the
above method the optimal way to ensure the card at the top protrudes farther?
When you consider the method locally, as you put every card on the edge of
balance in each step, at a glance it seems impossible to improve.
However, surprisingly, recently (in 2006) it was shown that this method is not
optimal, and we can reduce the number of cards in general!a That is, we
have algorithms that are more efficient for stacking cards. Honestly, as the
author himself never imagined that this method might be improved, he was
very surprised when he heard the presentation about the improved algorithm.
Aside from the details of the algorithm, the author had to take his hat off to
their idea that the classic method might not be optimal.

aMike Paterson and Uri Zwick, “Overhang,” Proceedings of the 17th annual ACM-SIAM
symposium on Discrete algorithm, pp. 231–240, ACM, 2006.� �



32 1. PRELIMINARIES

2

1

5

7

4

6

3

2

1

5

7

4

63

Figure 9. Example of a graph

6. Graph

Graph theory is a research area in modern mathematics. It is relatively new
topic in the long history of mathematics, and it currently continues to be quite an
active research area. However, the notion of a “graph” itself is quite a simple model.
We have a point known as a vertex, and two vertices may joined by a line known
as an edge. Two vertices joined by an edge are said to be adjacent. A graph
consists of some vertices joined by some edges. Some reader may be thinking “that’s
it?”, but that’s it. A graph is a simple model to represent the connections between
some objects. For example, on the world wide web, each web page is represented
by a vertex, and each hyperlink corresponds to an edge. In this example, we note
that each hyperlink has its direction. Even if a page A refers to another page B
by hyperlink, the page B does not necessarily indicates the page A by another
hyperlink. Such a graph with directed edges is known as a directed graph, and
if edges have no direction, the graph is known as an undirected graph. In this
book, we assume that an edge joins two different vertices, and for each pair of
vertices, only one edge is allowed between them. (Such a graph is referred to as a
simple graph in technical terms in graph theory.)

In this book, we also suppose that the vertices in a graph are uniquely numbered
by consecutive positive integers. That is, vertices in a graph with n vertices can
be identified by 1, 2, . . . , n. In an undirected graph, each edge can be represented
by a set of two vertices. That is, if vertices 1 and 50 are joined by an edge, it is
represented by {1, 50}. In a directed graph, because the edge has a direction, we
represent it by an ordered pair; hence, the edge is represented by (1, 50). We note
that {} represents a set, and () represents an ordered pair. That is, {1, 50} and
{50, 1} both indicate the same (unique) edge joining two vertices 1 and 50, whereas
(1, 50) and (50, 1) are different edges (from 1 to 50 and from 50 to 1) on a directed
graph. This may confuse some readers; however, this subtle difference is not such
a serious issue in the description of an algorithm.

Exercise 15. In Figure 9, there are two graphs. Enumerate all edges in
each graph, and compare these two graphs.
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Figure 10. An example of a tree

A graph is a very simple but strong model and has many interesting properties.
Here we introduce three theorems that show useful properties for the analysis of
algorithms, with two proofs for them.

The first theorem is about the degrees of an undirected graph. The degree
d(i) of a vertex i in an undirected graph is the number of vertices that are adjacent
to vertex i. In other words, d(i) is the number of edges joined to the vertex i. For
the degrees of a graph, the following theorem is well known.

Theorem 3. In an undirected graph, the summation of the degrees of the ver-
tices is equal to twice the number of edges.

Exercise 16. Compare the summation of the degrees of the vertices in the
graph in Figure 9 with the number of edges.

Theorem 3 seems to be strange, but can be proved elegantly by changing the
viewpoint.

Proof. Observe the operation “add d(i) for each vertex i” from the viewpoint
of an edge. Each edge {i, j} is counted from vertex i and vertex j. That is, each edge
is counted twice. Therefore, in total, the summation becomes twice the number of
edges. �

Exercise 17. For a vertex i in a directed graph, the number of edges
from the vertex i is referred to as out-degree, and the number of edges to the
vertex i is referred to as in-degree. Then, develop an analogy of Theorem 3 for
directed graphs.

Next, we introduce a special class of graphs known as trees. On an undirected
graph, if any pair of vertices is joined by some sequence of edges, this graph is
considered to be connected. For a connected graph, if any pair of vertices has
a unique route between them, this graph termed a tree. Intuitively, a tree has
no cycle; otherwise, we would have some pair of vertices with two or more routes
between them. Formally, a graph is a tree if and only if it is connected and acyclic.
We here show two examples of trees in Figure 10. There is an interesting theorem
for trees.

Theorem 4. Any tree with n vertices has exactly n− 1 edges. Oppositely, any
connected graph with n− 1 edges is a tree.
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There are exponentially many trees with n vertices. Nevertheless, every tree
has the same number of edges if the number of vertices is fixed. It is an impressive
fact. In fact, two trees in Figure 10 have seven vertices with six edges. From the
viewpoint of algorithm design, as we will see, the intuition that “any tree with n
vertices has almost n edges” is useful. The proof of Theorem 4 is not simple and
we omit from this book. However, this theorem is one of the basic and important
theorems in graph theory, and it is easy to find the proof in standard textbooks on
graph theory.

Each vertex of degree 1 in a tree is known as a leaf. The following theorem is
simple and useful.

Theorem 5. Every tree with at least two vertices has a leaf.

Proof. It is trivial that a tree with two vertices consists of two leaves. We
consider any tree T that has three or more vertices. Suppose that this T has no
leaves. Because T is connected, every vertex has a degree of at least 2. Therefore, by
Theorem 3, for m number of edges, we have 2m =

∑
each vertex v d(v) ≥ 2×n = 2n,

which implies m ≥ n. However, this contradicts the claim m = n − 1 in Theorem
4. Therefore, any tree has a vertex of degree one. �

Examining the two trees in Figure 10, the left tree has two leaves (vertices 1
and 7), and the right tree has four leaves (vertices 2, 3, 4, and 7). In fact, Theorem
5 can be strengthened to “every tree with at least two vertices has at least two
leaves.” However, in this book, we only need the fact that every nontrivial tree has
a leaf.

Theorem 5 is useful when we design an algorithm that functions on a tree
structure. Suppose we would like to solve some problem P defined on a tree T .
Then, by Theorem 5, T has to have a leaf. Thus, we first solve P on the leaf
vertex. Then, we remove the useless (or processed) vertex with its associated edge.
This leaf is of degree one; hence, the tree is still connected after removing the leaf.
Moreover, the condition in Theorem 4 still holds because we have removed one
vertex and one edge. That is, after removing the leaf the graph continues to be a
tree, and we again have another unprocessed leaf. In this way, we can repeatedly
apply the same algorithm to each leaf, reducing the graph one by one, and finally,
we have a trivial graph with one vertex. Even problems that are difficult to solve
on a general graph, can sometimes be solved efficiently on a tree in this way.

6.1. Representations of a graph. When we process a graph by computer,
we have to represent the graph in memory in some ways. There are two typical
approaches for representing a general graph. Mainly, the first approach is used
when the algorithm is concerned with the neighbors of each specified vertex, and
the second approach is used when the algorithm processes the whole graph structure
at once. Both ways have their advantages; thus, we choose one of them (or the other
specified way) according to the main operations in the algorithm.

Representation by adjacency set. The vertices adjacent to a vertex i are
represented by an adjacency set. That is, the neighbor set N(i) for a vertex i in an
undirected graph is defined by

N(i) = {j | there is an edge {i, j} in the graph},
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and the corresponding set N(i) for a vertex i in a directed graph is defined by

N(i) = {j | there is an edge (i, j) in the graph}.

That is, in each case, N(i) denotes the set of vertices that can be reached from
vertex i in one step.

This relationship can be represented by a two-dimensional array. That is, we
prepare a sufficiently large two-dimensional array A[i, j], and each element in the
neighbor set N(i) of the vertex i is stored in A[i, 1], A[i, 2], . . .. In our notation, the
naming of vertices starts from 1. Therefore, we can specify that A[i, j] = 0 means
“empty.” Using this delimiter, we can determine the end of data for each N(i). For
example, when the neighboring set N(1) of the vertex 1 is N(1) = {2, 3, 5, 10}, they
are represented by A[1, 1] = 2, A[1, 2] = 3, A[1, 3] = 5, A[1, 4] = 10, and A[1, 5] = 0.
This representation is useful when an algorithm examines “the entire neighbors j
for each vertex i.” More precisely, it is useful to search for some property in a given
graph.

Example 3. As an example, let us construct the representation of the graph
given in Figure 9 by the adjacency set. According to the answer to Exercise 15,
the set of edges is {{1, 2}, {1, 5}, {1, 6}, {1, 7}, {2, 7}, {3, 4}, {3, 6}, {4, 5}, {4, 6},
{4, 7}, {5, 7}}. We represent it in an array A[]. In the array A[i, j], A[i, ∗] consists
of the vertices adjacent to i. Note that A[i, ∗] does not contain i itself. Moreover,
as a delimiter, we have to pack 0 at the tail of A[i, j] Therefore, we need six entries
with one delimiter in A[i, ∗] in the worst case. In this example, we prepare A[1, 1]
to A[7, 7]. (In this example, in fact, A[i, 7] is never used for each i since we have
no vertex of degree 6.) The edges including 1 are {1, 2}, {1, 5}, {1, 6}, and {1, 7}.
Therefore, we have A[1, 1] = 2, A[1, 2] = 5, A[1, 3] = 6, A[1, 4] = 7, and A[1, 5] = 0.
Similarly, vertex 2 appears in {1, 2} and {2, 7} (do not forget {1, 2}). Thus, we have
A[2, 1] = 1, A[2, 2] = 7, and A[2, 3] = 0. In this way, we obtain the array A[] as
follows

A =



2 5 6 7 0 0 0
1 7 0 0 0 0 0
4 6 0 0 0 0 0
3 5 6 7 0 0 0
1 4 7 0 0 0 0
1 3 4 0 0 0 0
1 2 4 5 0 0 0


In this representation, the vertices in a row are in increasing order. However, of
course, we have other equivalent representations. For example, the following array
A′[] is also a valid representation of the same adjacent set.

A′ =



2 7 6 5 0 0 0
7 1 0 0 0 0 0
4 6 0 0 0 0 0
5 6 3 7 0 0 0
7 4 1 0 0 0 0
3 4 1 0 0 0 0
5 4 2 1 0 0 0


Some readers may be concerned about the latter part of arrays A[i, j] and

A′[i, j] for a large j, which is wasted. This is not problematic if the degrees of the
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vertices are almost equal; instead, there would be reason for concern if they were
extremely varied such as the graph representing Web pages (see page 36). In such
a case, the use of pointers (which is beyond the scope of this book) instead of an
array, would enable us to construct a more efficient data structure.

Representation by adjacency array. In an adjacency array representation, we
again use a two-dimensional array A[i, j]; however, element [i, j] directly indicates
edge (i, j) or {i, j}. That is, if A[i, j] = 0 we have no edge between two vertices
i and j, and A[i, j] = 1 means there is an edge joining the vertices i and j. This
representation is not efficient for a large graph with a few edges from the viewpoint
of memory usage. On the other hand, some algorithms run fast because they are
able to determine whether the graph contains the edge {i, j} in one step. Moreover,
this representation is extensible to graphs with weighted edges; in this case, A[i, j]
provides the weight of the edge {i, j}. When we consider an undirected graph, we
have A[i, j] = A[j, i]. Usually, the diagonal elements A[i, i] are set to be 0.

Example 4. Here we again consider the graph in Figure 9 and represent it
by an adjacency array. This time, we write 1 if the graph has the corresponding
edge, and 0 if not. For example, for the edge {1, 2}, we write 1s for both of the
(1, 2) element and the (2, 1) element in the array. However, for the pair {3, 5}, we
have no edge between vertices 3 and 5; hence, we write 0s at both for the (3, 5) and
(5, 3) elements. We also define (i, i) as 0 for every i, then the resulting adjacency
array A′′[] for the edge set {{1, 2}, {1, 5}, {1, 6}, {1, 7}, {2, 7}, {3, 4}, {3, 6}, {4, 5},
{4, 6}, {4, 7}, {5, 7}} is represented as follows:

A′′ =



0 1 0 0 1 1 1
1 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 1 0 1 1 1
1 0 0 1 0 0 1
1 0 1 1 0 0 0
1 1 0 1 1 0 0


Note that we have a unique A′′ unlike an adjacency set because the indices of the
vertices are fixed. In an undirected graph, we always have A′′[i, j] = A′′[j, i], that
is, A′′ is a symmetric matrix. In this representation, each entry is either 0 or 1.

Link structure of WWW� �
It is known that the graph representing the link structure of the WWW (World
Wide Web) has a property referred to as scale free. In a scale free graph, most
vertices have quite small sets of neighbors, whereas few vertices have quite large
sets of neighbors. Considering real WWW pages, many WWW pages contain
a few links that are maintained by individual people; however, as for a search
engine, few WWW pages contain a large number of links. In this book, we
introduce two different representations for graphs. Unfortunately, none of them
would be able to efficiently (from the viewpoint of memory usage) maintain a
huge scale-free graph. This would require a more sophisticated data structure.� �



CHAPTER 2

Recursive call

bababababababababababababababab

Recursive call may appear difficult when you initially approach, but it can-
not be overlooked when it comes to studying algorithms. It bears a close
connection with mathematical induction, and those who once had a frus-
trating experience with mathematical induction in the past may feel intim-
idated, but there is nothing to fear. It is the author’s opinion that anyone
who understands grammatically correct your native language and knows
how to count natural numbers can master the use of recursive calls. In
this chapter, we will attempt to understand recursive calls and their cor-
rect usage by considering two themes: the “Hanoi tower” and “Fibonacci
numbers.”

What you will learn:� �
• Recursive call
• Hanoi tower
• Fibonacci numbers
• Divide-and-conquer
• Dynamic programming� �
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Figure 1. Tower of Hanoi with 7 discs

1. Tower of Hanoi

Under a dome that marks the center of the world in a great temple in Benares,
India, there are three rods. In the beginning of the world, God piled 64 discs of
pure gold onto one of the rods in descending order of size from bottom to top.
Monks spend days and nights transferring discs from rod number 1 to rod number
3 following a certain rule. The world is supposed to end as soon as the monks finish
moving all the discs. The rules for moving the discs around are quite simple. In the
first place, only one disc can be moved at a time. Moreover, a disc cannot be placed
upon a smaller one. How can the monks move the disks in an efficient manner?
Moreover, how many times would the monks have to move the discs around to
finish moving all discs?

This puzzle is known as the Tower of Hanoi. It was originally proposed in 1883
by French mathematician E. Lucas. An example of the Tower of Hanoi available
in the market is shown in Figure 1. This example has seven discs. In this chapter,
we will consider algorithms to move discs and the number of moves H(n), where n
is the number of discs.

We simplify descriptions by denoting the transfer of disc i from rod j to rod
k as (i; j → k). Consider that the discs are enumerated in ascending order of
size, starting from the smallest one. Let us start with a simple case, which is a
convenient way to familiarize ourselves with the operation. The simplest case is
of course for n = 1. If there is only one disc, it is straightforward to perform
operation (1; 1→ 3), which consists of simply moving the disc from rod 1 to rod 3;
thus, H(1) = 1. Next, let us consider the case n = 2. In the beginning, the only
operations that are possible are (1; 1 → 3) or (1; 1 → 2). As we eventually want
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Figure 2. View of the transitions of the Tower of Hanoi for n = 3

to execute (2; 1 → 3), we choose the latter alternative. With a little thought, it is
not difficult to conclude that the best operations are (1; 1 → 2), (2; 1 → 3), and
(1; 2→ 3). Therefore, H(2) = 3. At this point, we start getting confused for values
of n = 3 or greater. After some thought, we notice the following three points:

• We necessarily have to perform operation (3; 1→ 3).
• Operation (3; 1 → 3) requires all discs except 3 to be moved from rod 1

to rod 2.
• After performing (3; 1 → 3), all discs already moved to rod 2 must be

transferred to rod 3.

Regarding the “evacuation” operation of “moving all discs from rod 1 to rod
2,” we can reuse the procedure previously used for n = 2. In addition, the same
procedure can be used for “moving all discs from rod 2 to rod 3.” In other words,
the following procedure will work:

• Move discs 1,2 from rod 1 to rod 2: (1; 1→ 3), (2; 1→ 2), (1; 3→ 2)
• Move disc 3 to the target: (3; 1→ 3)
• Move discs 1,2 from rod 2 to rod 3: (1; 2→ 1), (2; 2→ 3), (1; 1→ 3)

Therefore, we have H(3) = 7 (Figure 2).
Here, let us further look into the rationale behind the n = 3 case. We can see

that it can be generalized to the general case of moving k discs, i.e.,

• It is always true that we have to execute operation (k; 1→ 3).
• Executing operation (k; 1→ 3) requires all k − 1 discs to be moved from

disc 1 to disc 2.
• After executing operation (k; 1→ 3), all discs sent to rod 2 must be moved

to rod 3.

An important point here is the hypothesis that “the method for moving k− 1 discs
is already known.” In other words, if we hypothesize that the problem of moving
k − 1 discs is already solved, it is possible to move k discs. (By contrast, as it is
not possible to move k discs without moving k − 1 discs, this is also a necessary
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Figure 3. Execution flow of Hanoi(3, 1, 2). The parts displayed
against a grey background are outputs, and the circled numbers
denote the order of output.

condition.) This rationale is the core of a recursive call, that is, it is a technique
that can be used when the two following conditions are met:

(1) Upon solving a given problem, the algorithm for solving its own partial
problem can be reused;

(2) The solution to a sufficiently small partial problem is already known. In
the case of the Tower of Hanoi in question, the solution to the k = 1 case
is trivial.

If the above is written as an algorithm, the following algorithm for solving the
Tower of Hanoi problem takes shape. By calling this algorithm as Hanoi(64, 1, 3),
in principle the steps for moving the discs will be output.

Algorithm 11：Algorithm Hanoi(n, i, j) for solving the Tower of Hanoi prob-
lem

Input ：number of discs n, rods i and j
Output ：procedure for moving discs around

1 if n = 1 then
2 output “move disc 1 from rod i to rod j”

3 else
4 let k be the other rod than i, j;

5 Hanoi(n− 1, i, k);

6 output “move disc n from rod i to j”;

7 Hanoi(n− 1, k, j);

8 end

We can see that the above can be written in a straightforward manner, with no
unnecessary moves. Here, a reader who is not familiarized with recursive calls may
feel somewhat fooled. In particular, the behavior of variable n and that of variables
i, j may seem a little odd. At first sight, variable n seems to have multiple meanings.
For example, when Hanoi(3, 1, 2) is executed, n = 3 in the beginning, but as the
execution of Hanoi(n − 1, i, k) proceeds, we require n = 2 inside the call. Further
into the process, a function call takes place with n = 1, and the sequence of recursive
calls stops. An example of a Hanoi(3, 1, 2) execution is shown in Figure 3. Within



1. TOWER OF HANOI 41

this sequence of calls, “variable n” represents different roles under the same name.
This may seem strange to the reader. This is useful for those who are familiarized,
but may confuse those who are not. Readers who are not particularly interested
may proceed, but unconvinced ones are invited to refer to Section 1.2, “Mechanism
of Recursive Calls.”

Exercise 18. Write Hanoi(4, 1, 3) down by hand. What is the value
of H(4)? Predict the value of the general case H(n).

1.1. Analysis of the Tower of Hanoi. If we actually compute H(4) of
Exercise 18, we are surprised by the unexpectedly large number obtained. In the
present section, we will consider the value of H(n) in the general case. In terms of
expressions, the analysis above can be formulated as the following two expressions:

H(1) = 1
H(n) = H(n− 1) + 1 + H(n− 1) = 2H(n− 1) + 1 (for n > 1)

Recursive calls are intimately related to mathematical induction. This is not sur-
prising, considering that they almost represent the two sides of the same coin.
However, we will try the easiest way. First, let us add 1 to both sides of the equa-
tion H(n) = 2H(n−1)+1, obtaining H(n)+1 = 2H(n−1)+2 = 2(H(n−1)+1).
Denoting H ′(n) = H(n) + 1, we obtain H ′(1) = H(1) + 1 = 2, and we can further
write H ′(n) = 2H ′(n− 1). By further expanding the right-hand side for a general
n, we obtain:

H ′(n) = 2H ′(n− 1) = 2(2(H ′(n− 2))) = · · · = 2n−1H ′(1) = 2n

returning to the original equation, we have:

H(n) = H ′(n)− 1 = 2n − 1.

In other words, roughly speaking, adding one disc increases the number of moves
by approximately two times. As we have seen in Section 5, this is an exponential
function and the number is known to grow explosively.

Exercise 19. How many moves H(n) are required to move 64 discs?
Considering that it takes 1 second to move a single disc, what is the approximate
time left before the end of the world?

1.2. Recurrent call mechanism. If we think about it, we realize that the
mechanism of recurrent calls is a strange one. Why do we attach different mean-
ings to variables with the same name and manage to control the process without
confusion? It is worth taking an alternative approach to carefully consider this.
For example, let us look at the following Duplicate algorithm, which results from a
slight modification of the Tower of Hanoi algorithm:
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Algorithm 12：Duplicate(n)
Input ：Natural number n
Output ：if n > 1 then display n twice each time, with a recurrent call in between

1 if n = 1 then
2 output the value of n

3 else
4 output the value of n;

5 Duplicate(n− 1);

6 output the value of n;

7 Duplicate(n− 1);

8 end

The algorithm has an impressive name, but is quite simple. It works as follows
when actually executed. Because it basically repeats the action “output n and
attach the output up to n− 1” twice, it is easy to consider the sequences that are
output by starting with a small value of n:

• Duplicate(1) produces 1 as the output.
• Duplicate(2) produces 2121 as the output.
• Duplicate(3) produces 3212132121 as the output.
• Duplicate(4) produces 4321213212143212132121 as the output.

The sequences of numbers that are output seem to have a meaning, but in fact, they
do not. It is worth noting “variable n” here. It is nested upon each recursive call
and controlled in separate memory areas under the same name n. Let us present
an aspect of this recursive call in the form of a diagram (Figure 4, where the
second half is omitted). Roughly speaking, the vertical axis shows the process flow,
which represents time evolution. The issue is the horizontal axis. The horizontal
axis shows the “level” of recursive calls. The level becomes deeper and deeper as
we proceed rightwards. When the subroutine named Duplicate is called with an
argument n as in Duplicate(n), the computer first allocates local memory space for
argument n and stores this value. When the recursive call ends, this memory area
is released/cleared by deleting its contents.

To further clarify this problem, let us denote the memory area allocated upon
the i-th call to Duplicate(n) as ni. When Duplicate(4) is called, memory for n1

is first allocated, and when Duplicate(3) is executed in between, memory n2 is
allocated, and so on. When ni is no longer necessary, it is released. Figure 4
also shows aspects of memory allocation and clearance. If ni is correctly managed,
recursive calls are executed correctly. On the other hand, if any kind of confusion
occurs, it is not possible to correctly identify the variables. Here we denote the event
“allocated variable ni” as [

i

, and the event “released variable ni” as ]
i

. Using this

notation, if we place the events involving variable allocation and release in Figure
4 in chronological order, we obtain the following sequence of symbols. The figure
shows only the first half, but the second half has a similar shape. The following
sequence of symbols includes the second half also.

[
1

[
2

[
3

[
4

]
4

[
5

]
5

]
3

[
6

[
7

]
7

[
8

]
8

]
6

]
2

[
9

[
10

[
11

]
11

[
12

]
12

]
10

[
13

[
14

]
14

[
15

]
15

]
13

]
9

]
1

If we look at it carefully, we realize that in fact the “i” part of the notation is
not needed. In other words, even without the index “i”, “[” and “]” are correctly
related to each other. Furthermore, two differing indices may be an indication
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Duplicate(4)

Output 4
Duplicate(3)

Output 4
Duplicate(3)

Duplicate(3)

Output 3
Duplicate(2)

Output 3
Duplicate(2)

Duplicate(2)

Output 2
Duplicate(1)

Output 2
Duplicate(1)

Duplicate(1)

Output 1

Duplicate(1)

Output 1

Duplicate(2)

Output 2
Duplicate(1)

Output 2
Duplicate(1)

Duplicate(1)

Output 1

Duplicate(1)

Output 1

Generate n1

Generate n2

Release n2

Generate n3

Release n3

Generate n4

Release n4

Generate n5

Release n5

Generate n6

Release n6

Generate n7

Release n7

Generate n8

Release n8

Figure 4. Flow of Duplicate(4). (Here the first half with output
432121321214 is shown. The second half with output 3212132121
is omitted.)

of nesting such as [
i

[
j

]
j

]
i

, or an independent case such as [
i

]
i

[
j

]
j

. An “entangled

relation” such as [
i

[
j

]
i

]
j

never occurs. In other words, variables ni are released in

the opposite order in which they are allocated. Does this sound familiar? Yes,
that is the “stack.” The variables of a recursive call can be managed using a
stack. In concrete terms, whenever Duplicate(n) is called, a new memory location
is allocated on the stack, and this location can be referenced when n needs to
be accessed. Moreover, when calling Duplicate(n) has finished, the last element
allocated to the stack can be accessed and deleted. Thus, the management of
variables in a recursive call is exactly the same as for the stack structure. Leonardo

Fibonacci:1170?–

1250?:

Italian mathemati-

cian. His real name

was Leonardo da

Pisa, which means

“Leonardo from Pisa.”

“Leonardo Fibonacci”

means “Leonardo,

son of Bonacci.” In

fact, he did not invent

Fibonacci numbers

himself. They bor-

rowed his name due to

the popularity gained

after he mentioned

them in his book

“Liber Abaci” (book

on abacus).

When realizing/implementing a recursive call, it is inevitable to use the same
variable name for different meanings. This “trick” is not restricted to recursive
calls, and can be used as a standard in several programming languages. These
variables are called “local variables,” and are in fact managed by means of the
stack structure. On the other hand, it is also useful to have variables that “always
mean the same thing, anywhere.” These are called “global variables.” Managing
“global variables” is not difficult. However, excessive use of global variables is not
a smart practice for a programmer. The best practice is to divide the problem into
local problems, and then encapsulate and solve them within their ranges.

2. Fibonacci numbers

Fibonacci numbers denote a sequence of numbers that go under the name
of Italian mathematician Leonardo Fibonacci. More precisely, these numbers are
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known as Fibonacci sequence, and the numbers that belong to this are called Fi-
bonacci numbers. The sequence actually has quite a simple definition, namely:

F (1) = 1,

F (2) = 1,

F (n) = F (n− 1) + F (n− 2) (for n > 2).

In concrete terms, the sequence can be enumerated as 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . ..
The Fibonacci sequence F (n) is known to attract widespread interest for frequently
appearing as a numerical model when we try to build models representing natural
phenomena, such as the arrangement of seeds in sunflowers, the number of rabbit
siblings, and others. Let us deepen our understanding of recursive calls using this
sequence. At the same time, let us discover the limitations of recursive calls and
introduce further refinements.

2.1. Computing Fibonacci numbers F (n) arising from recursive calls.
There is one particular aspect that must be considered carefully when working
with recursive calls. We have seen that, in recursive calls, the algorithm capable
of solving its own partial problem is reused. It is worth noting to what extent
this “partial problem” is necessary. In the Tower of Hanoi problem, we reused the
algorithm for solving the partial problem of size n− 1 to solve a problem of size n.
Considering the definition of Fibonacci numbers F (n), the values of both F (n− 1)
and F (n− 2) are required. From this fact, we learn that it does not suffice to show
a clear solution for the small partial problem in n = 1, but the solutions for n = 1
and n = 2 are also needed. If we construct the algorithm according to its definition
while paying attention to this point, we obtain the algorithm below. Using this
algorithm, the n-th Fibonacci number F (n) can be obtained by calling Fibr(n),
which produces the returned value as its output.

Algorithm 13：recursive algorithm Fibr(n) to compute the n-th Fibonacci
number F (n)

Input ：n
Output ：the n-th Fibonacci number F (n)

1 if n = 1 then return 1;

2 if n = 2 then return 1;

3 return Fibr(n− 1) + Fibr(n− 2);

Exercise 20. Implement and execute the algorithm above. How will
the program behave when n is made slightly larger (by a few tens)?

2.2. Execution time of Fibr based on recursive calls. When we imple-
ment and execute Fibr(n), execution clearly slows down for values around n = 40
and above. Why does this occur? Let us consider an execution time tF (n). When
considering execution times, examining the recursive equation is inevitable. In
concrete terms, we have:

• For n = 1: a constant time tF (1) = c1

• For n = 2: a constant time tF (2) = c2

• For n > 2: for a given constant c3, tF (n) = tF (n− 1) + tF (n− 2) + c3

Here, the value of the constant itself has no meaning, and therefore we can simply
denote them as c. By adding c to both sides of the equation, for n > 2 we can



2. FIBONACCI NUMBERS 45

F(9) F(8) F(7) F(6) F(5) F(4) F(3) F(2)

F(1)F(2)

F(3) F(2)
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F(4) F(3) F(2)

F(1)F(2)

F(5) F(4) F(3) F(2)
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F(1)

Figure 5. Aspect of the computation of the Fibonacci number F (9)

write:
tF (n) + c = (tF (n− 1) + c) + (tF (n− 2) + c)

In other words, if we introduce another function t′F (n) = tF (n) + c, we can write:

t′F (n) = t′F (n− 1) + t′F (n− 2),

which is exactly equivalent to the definition of Fibonacci numbers. In other words,
the execution time tF (n) of Fibr(n) can be considered proportional to the value
of Fibonacci numbers. If we anticipate the contents of Section 2.4 below, it is
known that Fibonacci numbers F (n) will be F (n) ∼ Θ(1.618n). In other words,
Fibonacci numbers constitute an exponential function. Therefore, if we compute
Fibonacci numbers according to their definition, the computation time tends to
increase exponentially, that is, if n becomes larger, the computation time of a näıve
implementation is excessively large.

2.3. Fast method for computing Fibonacci numbers. We learned that,
according to the definition, the time required to compute Fibonacci numbers in-
creases exponentially. However, some readers may feel intrigued by that. For in-
stance, to compute F (9), only F (8) to F (1) suffice. First, let us solve the question
why the time required for computing Fibonacci numbers increases exponentially.
For example, F (9) can be computed if F (8) and F (7) are available. Computing
F (8) only requires knowing F (7) and F (6), and computing F (7) only requires F (6)
and F (5), and so forth. This calling mechanism is illustrated in Figure 5.
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What we need to note here is “who is calling who.” For instance, if we pay
attention to F (7), this value is called twice, that is, upon the computation of both
F (9) and F (8). That is, F (7) is nested twice to compute F (9). Likewise, F (6) is
called from F (8) and F (7), and F (7) is called twice. This structure becomes more
evident as we approach the leaves of the tree structure. F (2) and F (3) appear in
Figure 5 remarkably often. Thus, the Fibr(n) algorithm based on recursive calls
computes the same value over and over again in a wasteful fashion.

Once the problem becomes clear at this level, the solution naturally becomes
evident. The first idea that pops up is to use arrays. Using an array, we can
start computing from the smallest value and refer to this value when necessary.
Concretely speaking, we can use the following algorithm:

Algorithm 14：Algorithm Fiba(n) to compute the n-th Fibonacci number
F (n) using array Fa[]

Input ：n
Output ：n-th Fibonacci number F (n)

1 Fa[1]←1;

2 Fa[2]←1;

3 for i← 3, 4, . . . , n do
4 Fa[i]← Fa[i− 1] + Fa[i− 2];

5 end

6 output Fa[n];

First, F (1) and F (2) are directly computed when i = 1, 2. Then, for i > 2 it is
quite clear that for computing Fa[i] we already have the correct values of Fa[i− 1]
and Fa[i − 2]. These two observations indicate to us that Fibonacci numbers can
be correctly computed by this algorithm. Therefore, the computation time of the
Fiba(n) algorithm is linear, that is, proportional to n, which means it is extremely
fast.

Let us stop for a while to think ahead. For i > 2, what is necessary for
computing F (i) is F (i − 1) and F (i − 2), and elements further behind are not
needed. In other words, provided that we keep in mind the last two elements, the
array itself is unnecessary. With that perception in mind, we can write an even
more efficient algorithm (from the viewpoint of memory space):
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Algorithm 15：Algorithm Fib2(n) to compute the n-th Fibonacci number
F (n) without using arrays

Input ：n
Output ：n-th Fibonacci number F (n)

1 if n < 3 then
2 output “1”;

3 else
4 Fa1← 1 ; /* Memorize F (1) */

5 Fa2← 1 ; /* Memorize F (2) */

6 for i← 3, 4, . . . , n do
7 Fa← Fa2 + Fa1 ; /* Compute/memorize F (i) = F (i− 1) + F (i− 2) */

8 Fa1← Fa2 ; /* Update F (i− 2) with F (i− 1) */

9 Fa2← Fa ; /* Update F (i− 1) with F (i) */

10 end

11 output Fa;

12 end

Exercise 21. Implement and execute the algorithm above. Confirm
that the answer is output immediately even for very large values of n.

2.4. Extremely fast method to compute Fibonacci numbers. Fibonacci
numbers F (n) have fascinated mathematicians since ancient times due to their in-
triguing and interesting properties. In this section, let us borrow some of the results
of such mathematical research. In fact, it is known that the general term of Fi-
bonacci numbers F (n) can be expressed by the following expression:

F (n) =
1√
5

((
1 +
√

5
2

)n

−

(
1−
√

5
2

)n)

It is fascinating that even though
√

5 appears several times in the equation, the
result F (n) is always a natural number for any input n that is a natural number. If
we implement an algorithm that computes this equation, the computation time of
a Fibonacci number F (n) ends in a constant time. (Considering the errors involved
in the computation of

√
5, there might be cases in which the algorithm that allows

computation in linear time of the previous section is preferable.)
In the present Section, let us prove that the Fibonacci number F (n) approxi-

mately follows Θ(1.618n). First, consider the two terms
(

1+
√

5
2

)n

and
(

1−
√

5
2

)n

.

If we actually compute them, we obtain
(

1+
√

5
2

)
= 1.61803 . . . and

(
1−

√
5

2

)
=

−0.61803 . . .. Thus, the absolute value of the former is considerably larger than
1, whereas the absolute value of the latter is considerably smaller than 1. There-
fore, as n increases the value of

(
1+

√
5

2

)n

increases very fast, whereas the value of(
1−

√
5

2

)n

becomes small very quickly. Thus, the value of F (n) is approximately

1.618n/
√

5, which is of the order Θ(1.618n), i.e., an exponential function.

Exercise 22. Prove by means of mathematical induction that the
general term equation for Fibonacci numbers F (n) actually holds.
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Exercise 23. Investigate the relation between Fibonacci numbers
F (n) and the golden ratio φ. The golden ratio φ is a constant defined as φ =
1+

√
5

2 , and its value is approximately 1.618.

3. Divide-and-conquer and dynamic programming

When tackling a large problem using a computer, approaching the problem
directly as a whole often does not lead to good results. In such cases, we must
first consider whether it is possible to split the large problem into small partial
problems. In many cases, a large problem that cannot be tackled as it is can be
split into sufficiently small partial problems that can be appropriately handled in-
dividually. Solving these individual partial problems and combining their solutions
often permits the original large problem to be solved. This method is known as
“divide and conquer.” The idea is that a large target must be divided to allow
for proper management. Political units such as countries, prefectures, cities, towns,
and villages also constitute examples of this idea. The divide-and-conquer method
can be considered a “top-down” approach.

The Tower of Hanoi problem was successfully solved by splitting the original
problem consisting of moving n discs into the following partial problems:

• Partial problem where the number of discs is n− 1
• Partial problem of moving only 1 disc (the largest one)

This is an example of divide-and-conquer. Regarding the computation of Fibonacci
numbers, using a recursive definition for computation can be considered a divide-
and-conquer method. However, in the case of Fibonacci numbers, we found a com-
putation method that is much more efficient than the divide-and-conquer method.
The limitation of the “divide-and-conquer” method for Fibonacci numbers is that
the solution to the problems that had already been solved is forgotten every time.
This is a characteristic of top-down approaches that is difficult to avoid, a fatal lim-
itation in the case of Fibonacci numbers. This condition resembles the situation of
vertical administration systems where similar organizations exist in several places.

Dynamic programming is a method conceived to address such problems. In
this method, minutely sliced problems are solved in a bottom-up approach. When
optimal solutions to partial problems are found, such that no further improvement
is possible, only the necessary information is retained and all the unnecessary infor-
mation is forgotten. In the Fibonacci numbers example, an important point is that
computations are carried out in a determined order, starting from the small values.
Because only the values of the Fibonacci numbers immediately preceding F (i− 1)
and F (i− 2) are needed, values further back can be forgotten. In other words, for
Fibonacci number computation, it suffices to retain only the previous two values.

In the case of the Tower of Hanoi problem, because all discs must be moved
every time, the problem does not fit well in the dynamic programming framework.
For this reason, the solution is limited to the divide-and-conquer method.



CHAPTER 3

Algorithms for Searching and Sorting
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Searching and sorting are two basic problems that contain many valuable
elements for algorithms. They are still being investigated in many related
areas. The series of books entitled “The Art of Computer Programming”
by D. E. Knuth is said to be “the bible” of algorithmic theory, and the
third volume has the subtitle “Sorting and Searching.” We will enjoy and
understand these deep problems in this chapter.

Donald Ervin

Knuth (1938–):

He is a professor

emeritus of computer

science at Stanford

University. The series

of books mentioned

in the text is called

“TAOCP.” It was

planned to publish

the series in seven

volumes, starting in

the 1960s. Now, some

preliminary drafts of

the fourth volume are

public on the Web.

It is surprising that,

to write this series,

Knuth first started

with designing and

programming the

well-known TEX sys-

tem for typesetting,

and the METAFONT

system for designing

typesetting fonts. See

Chapter 7 for more

details.

What you will learn:� �
• Linear search
• Sentinel
• Block search
• Binary search
• Lower bound for searching
• Hash
• Bubble sort
• Merge sort
• Quick sort
• Lower bound for sorting
• Bucket sort
• Spaghetti sort� �
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1. Searching

We first consider the search problem that is formalized as

Searching:

Input: An array a[1], a[2], . . . , a[n] and data x.
Output: The index i such that a[i] = x.

There are some variants of the problem according to the conditions, e.g.,
• It is guaranteed that there exists an i such that a[i] = x for every x or

not.
• The array a[] may contain the same data two or more times, that is,

a[i] = a[j] for some i 6= j or not.
• The elements in a[] are preprocessed following some rule or not. One typ-

ical assumption is that a[1] ≤ a[2] ≤ a[3] ≤ · · · ≤ a[n]. In real data, such
as dictionaries and address books, in general, massive data are organized
in some order.

For the moment, we have no special assumption on the ordering of data.

1.1. Linear search and its running time. A natural straightforward search
method is the linear search; it checks the data from a[1] to the last data item or
until finding x. The algorithm’s description is simple:

Algorithm 16：LinearSearch(a, x)
Input ：An array a[] and data x
Output ：The index i if there is an i with a[i] = x; otherwise, “Not found.”

1 i← 1;

2 while i ≤ n and a[i] 6= x do
3 i← i + 1;

4 end

5 if i ≤ n then
6 output i;

7 else
8 output “Not found”;

9 end

We now explain the while statement, which appears here for the first time. The
while statement is one of the control statements. It means “repeating some state-
ments while given condition.” In this linear search, after initializing the variable i
by 1 at line 1, the statement “i ← i + 1” is repeated while the condition “i ≤ n
and a[i] 6= x” holds. In other words, when we have “i > n or a[i] = x,” the loop
halts and the program goes to the next step. If we look at the manner in which the
while statement works, the correctness of the algorithm is easy to see. The running
time is Θ(n), which is also easily seen. When there is no i such that a[i] = x, the
algorithm halts in Θ(n) time, and if there is an i with a[i] = x, the algorithm finds
it after checking n/2 elements in the average case. (Of course, this “average case”
depends on the distribution of the data.)

Sentinel. We now introduce a useful technique for linear searching. This technique,
which is a type of programming technique rather than an algorithmic one, is called
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sentinel. One may feel that the linear search algorithm described above is a bit
more complicated than necessary. The reason is that, in the while statement, we
simultaneously check two essentially different conditions:

• Whether the array a[i] ends or not, and
• Whether i satisfies a[i] = x or not.

Moreover, although the algorithm checks whether i ≤ n in line 5, this check has al-
ready been performed once in the last while statement. This seems to be redundant.
Although the basic idea of the algorithm is simple, and even though the idea of the
underlying algorithm is also simple, when we consider the boundary conditions in
the implementation, it becomes complicated. This is often the case. How can we
resolve it?

One of the techniques for resolving this complexity is called sentinel. This is
a neat idea for unifying these two conditions “check the end of the array a[]” and
“check the index i with a[i] = x.” To apply this idea, we first prepare an additional
element a[n + 1] and initialize it by x. Then, of course, there does exist an index i
with a[i] = x in the interval 1 ≤ i ≤ n + 1. In this case, we find i with a[i] = x in
the original array if and only if 1 ≤ i ≤ n. Therefore, the algorithm can decide to
output i only if i < n + 1. This element a[i + 1] is called the sentinel. Using this
technique, the algorithm can be rewritten in a smarter style.

Algorithm 17：LinearSearchSentinel(a, x)
Input ：An array a[] and data x
Output ：The index i if there is an i with a[i] = x; otherwise, “Not found.”

1 i← 1;

2 a[n + 1]← x; ; /* This is the sentinel. */

3 while a[i] 6= x do
4 i← i + 1;

5 end

6 if i < n + 1 then
7 output i;

8 else
9 output “Not found”;

10 end

It may seem a trifling improvement, but the conditions in while are checked
every time, and this 50% reduction is unexpectedly efficient. Although it can be
applied only if we can use an additional element in the array, it is a noteworthy
technique.

1.2. Searching in pre-sorted data. In the linear search method, we assume
nothing about the ordering of the data. Thus, we cannot guess where x can be in
the array at all. In this case, we have a few tricks for improving the linear search
method, but it seems to be impossible to achieve a better running time than Θ(n).
Now, we turn to the significant case where the data are ordered. That is, our next
problem is the following.

Searching in ordered data:
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a[1] a[n]

dn

x

data less than x

data greater than or equal to x

(1) check elements in each dn

(2) check each element

Figure 1. Basic idea of block search.

Input: An array a[1], a[2], . . . , a[n] and data x. We know that a[1] ≤
a[2] ≤ · · · ≤ a[n].

Output: The index i such that a[i] = x.

We first mention that this assumption is reasonable. In dictionaries and address
books, where one searches real data, the data are usually already ordered to make
searching easier. In the case of repeated searching, such a pre-ordering is the
standard technique for making the search efficient. (Imagine what would happen if
you had to linear search the Oxford English Dictionary if it was not pre-ordered!)
Of course, we need to consider carefully whether or not this pretreatment will pay
off. At any rate, we introduce fast algorithms that use the assumption that the
given data is pre-ordered.

When you search a thick dictionary, how do you find the entry? Maybe you
first open the page “around there,” narrow the search area, and look at the entries
one by one. In this book, we call this strategy block search and investigate its
properties. That is, a block search consists of three phases: the algorithm first
introduces a block, which is a bunch of data, finds the block that contains your
data, and checks each data item in the block one by one. (Actually, this “block
search” is not in fact used in a computer program in this form. The reason will
appear later. This is why this method has no common name. That is, this “block
search” is available only in this book to explain the other better algorithm.)Implementation of

sentinel:

In the real implemen-

tation, we cannot use

“the value” ∞, and

hence, we have to al-

low it to be a suf-

ficiently large integer.

Several programming

languages have such

a special value. If

your language does

not have such a value,

you can set the max-

imum number of the

system. We some-

times use the same

idea in this book.

1.3. Block search and its analysis. To describe the block search algorithm
clearly, we introduce a new variable d. The algorithm repeats, skipping (dn−1), to
check each data item in all the data. We set 0 < d < 1; for example, when d = 0.1,
the algorithm checks each 10% of the data. That is, the size of each block is dn; in
other words, each block contains dn data (see Figure 1). To simplify, the following
two assumptions are set.

• Data are stored in a[1], a[2], . . . , a[n − 1], and a[n] can be used for the
sentinel. As the sentinel, it is better to assume that a[n− 1] < a[n] =∞
rather than a[n] = x, as we shall see.
• The number dn can divide n. In other words, if the algorithm checks

a[dn], a[2dn], a[3dn], and so on, eventually it certainly hits a[kdn] = a[n]
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for some integer k, and compares x with a[n], the sentinel, and obtains
x < a[n].

Based on the assumptions, the algorithm can be described as follows.

Algorithm 18：BlockSearch(a, x)
Input ：An ordered array a[1], a[2], . . . , a[n] and data x
Output ：The index i if there is an i with a[i] = x; otherwise, “Not found.”

1 i← dn;

2 while a[i] < x do
3 i← i + dn;

4 end

/* We can assert that a[i− dn] < x ≤ a[i] holds at this point. */

5 i← i− dn + 1;

6 while a[i] < x do
7 i← i + 1;

8 end

9 if a[i] = x then
10 output i;

11 else
12 output “Not found”;

13 end

In the while loop from line 2 to 4, the algorithm searches the smallest index i
with a[i] ≥ x for each dn data item. Therefore, when it exits this while loop, we
have a[i− dn] < x ≤ a[i]. Since x can exist from a[i− dn + 1] to a[i], the algorithm
checks whether x exists in the data elements in this interval from a[i− dn + 1] one
by one in the while loop from lines 6 to 8. (We can skip the (i − dn)th element,
because we already know that a[i− dn] < x.) When the while loop from line 6 to 8
is complete, we know that x ≥ a[i]. This time, in line 9, we can determine whether
a[i] contains x for some i with i itself by checking whether x = a[i] or not. By
virtue of the sentinel a[n] =∞, it is guaranteed that there exists an i that satisfies
x < a[i], which makes the second while loop simple.

Now, we estimate the running time of block search and compare it with that
of linear search. How about the first narrowing step? In the worst case, the search
checks n/(dn) = 1/d elements in the array a[i] for each dn element. In the average
case, we can consider the running time to be 1/(2d). The next step is essentially
the same as in a linear search. However, this time we have only dn data. Therefore,
it runs in dn time in the worst case and dn/2 in the average case. Summing up,
the algorithm runs in Θ(1/d + dn) time in both the worst and average case. If we
let d be larger, the time of the steps in the former half decreases, but that in the
latter half increases. On the other hand, when d is set smaller, the algorithm runs
more slowly in the former half. With careful analysis, these two factors become
well-balanced when d = 1/

√
n, and then, the running time becomes Θ(

√
n), which

is the minimum.

Exercise 24. Explain that for the function Θ(1/d + dn), d = 1/
√

n
gives us the minimum function Θ(

√
n).

Recalling that the linear search runs in Θ(n), it can be seen that the running
time Θ(

√
n) is a great improvement. For example, when n = 1000000, the block
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1 2 3 5 5 5 7 9 10 14 15 18 40 50 50

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13] a[14] a[15]

13

Figure 2. Illustration for binary search.

search runs 1000 times faster. Moreover, as n becomes larger, the improvement
ratio also increases.

1.4. From recursion to binary search. If we use a block search instead
of a linear search, the running time is drastically improved from Θ(n) to Θ(

√
n).

Nevertheless, this is not sufficient. How can we improve it further?
In a block search, the algorithm first makes a selection in each interval to narrow

the area, and then performs a linear search. Why do we not improve the latter half?
Then, we can use the idea of recursion described in Chapter 2. To begin with, we
introduce a block search to improve the linear search. Nevertheless, we again use
the linear search in the latter half in the block search to solve the subproblem. Then,
how about the idea of using a block search in this part recursively? It seems to
improve the latter half. Letting d1 be the first parameter to adjust in the first block
search, its running time is Θ(1/d1+d1n). The factor d1n indicates the running time
for solving the subproblem by using a linear search. This part can be improved by
replacing it with a block search. Let d2 be the second parameter for the second
block search. Then, the running time is improved to Θ(1/d1 + 1/d2 + d1d2n).
However, the factor d1d2n is solved by a linear search again, and therefore, we can
again apply a block search with parameter d3, and obtain a shorter running time,
Θ(1/d1+1/d2+1/d3+d1d2d3n). We can repeat this recursive process until we have
only one element in the array. If the array has only one element a[i], the algorithm
outputs i if a[i] = x; otherwise, “Not found.”

Now, we turn to consider the parameters d1, d2, d3, . . .. We omit the detailed
analysis of this part, since it is above the level of this book, but it is known that it
is best to choose d1 = d2 = · · · = 1/2; in other words, to check the item at the 50%
point in the range at every step. Namely, it is most effective to check the central
item in the range. If the algorithm hits the desired item at the center, it halts.
Otherwise, you can repeat the same process for the former or the latter half. To
summarize, the process of the “recursive block search” is as follows.

(1) Compare x with the a[i], which is the central element in a given array;
(2) If a[i] = x, then output i and halt;
(3) If the current array consists of one element, output “Not found” and halt;
(4) If a[i] > x, make a recursive call for the former half;
(5) If a[i] < x, make a recursive call for the latter half.

This method is usually called binary search, since it divides the target array into
two halves at each repeat.
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Example 5. For the array given in Figure 2, let us perform a binary search
with x = 13. The number of elements in a[] is 15; thus, we check whether a[8] = 9
is equal to x = 13 or not. Then, we have x > a[8]. Thus, the next range of
the search is a[9], . . . , a[15]. Here, we have seven elements; therefore, we check
whether a[12] = 18 is equal to x, and obtain a[12] > x. Thus, the range is now
a[9], a[10], a[11]. Comparing a[10] = 14 to x = 13, we have a[10] > x. Next, we
check a[9] = 10 and x = 13 and conclude that the array a[] does not contain x as a
data item.

Exercise 25. Implement a binary search on your computer.

Now, we consider the running time of the binary search method. The essence
of the running time is the number of comparisons. Therefore, we here simplify
the analysis and investigate only the number of comparisons. (The entire running
time is proportional to the number of comparisons; it is essentially the same as
considering it by using the O-notation.) The algorithm halts if it finds a[i] = x for
some i; however, we consider the worst case, that is, the algorithm checks the last
element and outputs “Not found.” In this case, the range of the array is halved
in each comparison and the algorithm halts after checking the last element in the
array of size 1. Therefore, the number of comparisons TB(n) in the binary search
on an array of size n satisfies the relations

TB(n) = 1 (if n = 1)
TB(n) = TB(d(n− 1)/2e) + 1 (if n > 1),

where d(n− 1)/2e denotes the minimum integer greater than or equal to (n− 1)/2.
In general, the algorithm picks up one data element from n data, compares it, and
divides the remaining (n−1) elements. In this case, if n−1 is even we have (n−1)/2
elements, but we still have n/2 in the worst case (or a larger range) if n− 1 is odd.
Since such details are not essential, we simplify the equations as

T ′
B(n) = 1 (if n = 1)

T ′
B(n) = T ′

B(n/2) + 1 (if n > 1).

Moreover, we assume that n = 2k. Then, we have

TB(2k) = TB(2k−1) + 1 = TB(2k−2) + 2 = · · · = TB(1) + k = 1 + k.

From n = 2k, we obtain k = log n. In general, if n cannot be represented in 2k

for an integer k, we may add imaginary data and consider the minimum n′ such
that n < n′ = 2k for some integer k. In this case, we can analyze for n′ and apply
the analysis results to the smaller n. From these arguments, we have the following
theorem.

Theorem 6. The binary search on n data runs in O(log n) time.

As emphasized in the logarithmic function in Section 5, the function in O(log n)
is quite small and the binary search runs quite fast. In comparison to the original
time Θ(n) for linear search, it may be said to be “almost constant time.” For exam-
ple, the population of Japan is around 120,000,000 and log 120000000 = 26.8385.
That is, if you have a telephone book that contains the entire Japanese population,
you can reach any person in at most 27 checks. If you use a linear search, the num-
ber of checks is still 120,000,000, and even the block search of O(

√
n) also requires

checking
√

12000000 ∼ 11000 times. Therefore, 27 is notably smaller.
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Exercise 26. The largest Japanese dictionary consists of around 240,000
words. If you use a binary search, how many words need to be checked to find a
word in the worst case?

We have considered the linear, block, and binary search methods. One may
think that the binary search method, as an improvement on the block search
method, is complicated. However, the binary search algorithm is indeed simple.
Therefore, the implementation is easy, and it is in fact quite a fast algorithm. For
this reason, the block search method is not used in practice.

Lower bound of searching. The binary search method is a simple and fast
algorithm. In fact, it is the best algorithm and cannot be improved further from
the theoretical viewpoint. More precisely, the following theorem is known.

Theorem 7. Let A be any algorithm that searches by comparing a pair of data
items. If A can use fewer than log n comparison operations, the search problem for
n data cannot be solved by A.

To give a strict proof, we have to borrow some notions from information theory.
However, intuitively, it is not very difficult to understand. As seen in the RAM
model in Section 1, to store n different data in a memory cell and give them unique
addresses (or indices), each address requires log n bits. This fact implies that, toResults of a com-

parison:

Here, to simplify, we

assume that x < y

or x > y holds in

a comparison. We

omit the other possi-

ble case, x = y, in

this book. Another

issue is that log n is

not an integer in gen-

eral. To be precise,

we have to take dlog ne
or blog nc according to

the context, which is

also omitted in this

book.

distinguish n data, log n bits are necessary. On the other hand, when we compare
two data items, we obtain 1 bit information about their ordering. Therefore, to
specify the position of x in the array a[] of n elements, we need to make log n
comparisons to obtain that log n bit address. In other words, if some algorithm
uses only fewer than log n comparisons, we can make counter data to the algorithm.
For this counter data, the algorithm will leave two or more data that should be
compared with x.

2. Hashing

In Theorem 7, we show the lower bound log n comparisons to solve the searching
if the algorithm uses comparison as a basic operator. If you sense something strange
about the basic operation, you are clever. Indeed, sometimes we can break this limit
by using another technique not based on comparison. The hash is one of them.
We first observe a simple hash to understand the idea.

Simple hash. The search problem asks whether there is an index i with a[i] = x
for a given array a[1], a[2], . . . , a[n] and data x. We here assume that we know
beforehand that “x is an integer between 1 and n.” For example, most student
examination scores are between 1 and 100; hence, this assumption is a simple but
realistic one. The array a[i] indicates whether there is a student whose score is i.
To represent this, we define that a[i] = 0 means “there is no data item of value
i” and a[i] = i if “there is a data item of value i” and the array is supposed to
be initialized following the definition. Then, for a given x, we can solve the search
problem in O(1) time by checking whether a[x] = x.

Idea of general Hash. Now, we turn to general hash. In general, there is no
limitation on the range of x. Thus, x can be much larger than n. How can we deal
with such a case? The answer to this question is the notion of the hash function.
The hash function h(x) should satisfy two conditions:

(1) The function h(x) takes an integer in the area [1..n].
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(2) If x is in the array a[], it is stored as in a[h(x)].
If we already know that the data in the array a[] and a function h satisfy these
conditions, the idea of hash can be described in algorithmic form as

Algorithm 19：Hash(a, x)
Input ：An array a[1], a[2], . . . , a[n] and data x
Output ：The index i if there is an i with a[i] = x; otherwise, “Not found.”

1 if a[h(x)] = x then
2 output h(x);

3 else
4 output “Not found”;

5 end

Since it is quite simple, it is easy to see that the algorithm certainly finds x if
it exists, and its running time is O(1). In short, the function h(x) computes the
index of x in the array a[]. Thus, if the function h(x) is correctly implemented, the
searching problem can be solved efficiently. In the notion of hash, x is called a key
and h(x) is called the hash value for the key x.

Implementation of hash function. As we have already seen, to perform the
hash function correctly its implementation is crucial. Unfortunately, we have no
silver bullet for designing a universal hash function. The difficulty is in satisfying
the second condition. To achieve this

(3) For any pair x and x′, we have to guarantee that x 6= x′ implies h(x) 6=
h(x′).

Otherwise, for some two different keys x and x′, we will refer to the same data
a[h(x)] = a[h(x′)]. In the general case, or when there is no limit to the key, we
cannot guarantee this condition. That is, even if we design a “nice” hash function,
we can say at most that

(3’) For h(x), we have few x′ with x 6= x′ such that h(x) = h(x′).
A case where “x 6= x′ and h(x) = h(x′)” is called a collision of the hash value.
When you use a hash function, you have to create a design that avoids collisions as
far as possible, and you have to handle collisions. Hereafter, we introduce the design
technique for hash functions and the manner in which can we handle collisions. This
book introduces only a few typical and simple techniques, but there are many others
for handling collisions.

Typical hash function. When x takes an integer, we have to map to an integer
in [1..n], and the most simple hash function is “(x modulo n) + 1.” If x can be
biased, choosing suitable integers a and b beforehand, we take “((ax + b) modulo
n) + 1.” Experimentally, it behaves well when you take a, b and n relatively prime
to each other. If x is not an integer, we can use its binary representation in the
computer system as a binary number, and handle in the same way.

Avoiding collision. For a given key x, assume that it occurs that a[h(x)] = x′

with x 6= x′, that is, we have a collision. In this case, a simple solution is to prepare
another function to indicate “the next position” for x. Among these techniques,
the simplest is to let “the next position” be the next empty element in a[]. That
is, algorithmically, it is described as

(1) Let i = 0.
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(2) For a given key x, check a[h(x)+ i], and report h(x)+ i if a[h(x)+ i] = x.
(3) If a[h(x) + i] is empty, report “Not found.”
(4) Otherwise, if a[h(x) + i] = x′ for some x′ with x′ 6= x, increment i (or

perform i← i + 1), and go to step 2.
The implementation is easy and it runs efficiently if few collisions occur.

Caution for usage. If you can use the hash function correctly, your algorithm
runs fast. If no or few collisions occur, the search can be complete in O(1) time.
Therefore, the crucial point is to design the hash function h(x) such that a few or
fewer collisions occur. To achieve this, the density of the data in a[] is one of the
issues. In a general search problem, sometimes new data are added, and useless data
are removed. Therefore, not all the elements in a[] are necessarily valid. Rather, if
a[] contains few data, few collisions occur, even if you use a simple hash function.
In contrast, if most of a[] are used to store data, collisions frequently occur and the
time required for the computation to avoid collisions becomes an issue. Since the
avoiding method introduced above essentially performs a linear search, if collisions
occur frequently, we have to refine this process. There are many tricks for handling
this problem according to the size of the memory and the number of data; however,
we omit them in this book.

3. Sorting

Next, we turn to the sorting problem. As seen in the binary search, if the
array is organized beforehand, we can search quite efficiently. If all the items in
your dictionary are incoherently ordered, you cannot find any word. Thus, you can
understand that huge data are meaningful only if the entries are in order. Therefore,
the following sorting problem is important in practice.

Sorting:

Input: Array a[1], a[2], . . . , a[n].
Output: Array a[1], a[2], . . . , a[n], such that a[1] ≤ a[2] ≤ · · · ≤ a[n]

holds.

We first mention two points that should be considered when handling the sort-
ing problem.

First, it is required that in the array the ordering of each pair is defined cor-
rectly. (Using a technical term, we can say that we have “total ordering” over the
data.) For example, in the game of “paper, rock, scissors,” we have three choices
and each pair has an ordering. However, they are not in total ordering, and hence,
we cannot sort them. More precisely, the data should have the following properties.
(1) For each pair of x and y, we have x < y or x > y, and (2) For each triple of
x, y, and z, x < y and y < z implies x < z. In other words, once we know x < y
and y < z, we can conclude x < z without comparing them. Oppositely, not only
numerical data, but also other data can be sorted if total ordering is defined over
the data. Typically, we can sort alphabetical words as in a dictionary.

Second, in sorting, if the data contain two or more items with the same value,
we have to be careful. Depending on the sorting algorithm, the behavior differs
for two items of the same value. For example, when we have two items a[i] = a[j]
with i < j, the sorting algorithm is called stable if the ordering of a[i] and a[j] is
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always retained in the output. If we are dealing with only numerical data, even if
the items are swapped, we are not concerned. However, the target of sorting may
not be only numerical data. Sometimes the bunch of data consists of some indices
of complicated data. For example, imagine that you have a huge amount of data
consisting of responses to a questionnaire, and you wish to sort them by the names
of the responders. In this case, it is not good if the attributes of two people of the
same name are swapped. Thus, the stability of sorting can be an issue in some
applications.

3.1. Bubble sort. One of the simplest sorting techniques is called bubble
sort. The basic idea is natural and simple: compare two consecutive items, swap
them if they are in reverse order, and repeat. Now we explain in more detail. The
algorithm first performs the following step.

• For each i = 1, 2, . . . , n − 1, compare a[i] and a[i + 1], and swap them if
a[i] > a[i + 1].

The important point is that after this step, the biggest item is put into a[n]. It is
not difficult to observe this fact since the algorithm swaps from a[1] to a[n − 1].
Once the algorithm has hit the biggest item, this item is always compared with the
next item, one by one, and eventually is moved to a[n]. Then, we can use the same
algorithm for the items in a[1] to a[n− 1]. After this step, the second biggest item
is put into a[n− 1]. We can repeat this process for each subproblem and we finally
have an array a[1] of size one, which contains the smallest item, and the sorting is
complete. Since we can imagine that the big item floats to the end of the array and
the small items stay condensed at the front, this method is called bubble sort.

Example 6. We confirm the behavior of the bubble sort method. Let assume
that the array contains the data

15 1 5 8 9 10 2 50 40.
First, we proceed to compare and swap each pair of two items from the top of
the array. Specifically, we first compare (15, 1) and swap them. The next pair is
(15, 5) and its components are also swapped. We demonstrate this below. The pair
compared is underlined.

15 1 5 8 9 10 2 50 40
1 15 5 8 9 10 2 50 40
1 5 15 8 9 10 2 50 40
1 5 8 15 9 10 2 50 40
1 5 8 9 15 10 2 50 40
1 5 8 9 10 15 2 50 40
1 5 8 9 10 2 15 50 40
1 5 8 9 10 2 15 50 40
1 5 8 9 10 2 15 40 50

At this step, it is guaranteed that the last item, 50, is the maximum value,
and therefore, we never touch it hereafter. In the following, we denote the fixed
maximum value (locally) by a rectangle. We now focus on the array preceding the
last value, 50, and repeat comparisons and swapping in this area. Then, we have

1 5 8 9 2 10 15 40 50
Now, we confirm that 40 is the maximum value, and we never touch it hereafter.
We repeat,
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1 5 8 2 9 10 15 40 50
and similarly 15 is fixed,

1 5 2 8 9 10 15 40 50
10 is fixed,

1 2 5 8 9 10 15 40 50
and 9 is fixed. In this example, although no more sorting is required, the real
algorithm proceeds and determines the ordering of the values one by one.

The bubble sort algorithm can be described as follows.

Algorithm 20：BubbleSort(a)
Input ：An array a[] of size n
Output ：An array a[] that is sorted

1 for j ← n− 1, n− 2, . . . , 2 do
2 for i← 1, 2, . . . , j do
3 if a[i] > a[i + 1] then
4 tmp← a[i];

5 a[i]← a[i + 1];

6 a[i + 1]← tmp;

7 end

8 end

9 end

10 output a[];

In lines 4 to 6, the algorithm swaps two elements a[i] and a[i + 1] using a
temporary variable tmp. (Of course, you can use the technique in Exercise 3. The
method in Exercise 3 has an advantage in that it requires no additional memory, but
it seems to be less popular because it requires additional mathematical operations.)

The bubble sort algorithm is simple and easy to implement. Therefore, it runs
efficiently when n is small. However, when n increases, the running time becomes
longer. The details are discussed in 3.4.

3.2. Merge sort. The merge sort method is one of the fast sorting algo-
rithms and is based on a simple idea. It is also a nice example of the notion of
divide and conquer described in Chapter 2.

In the merge sort method, the algorithm first only splits the array into the
former half and the latter half. Then, it sorts each half recursively, based on the
idea of divide and conquer. We do not consider how to solve these two subproblems
at this point. We just assume that we have succeeded in sorting the former and
latter halves. Now, we have obtained two sorted arrays. Then, we need to merge
these two sorted arrays into one sorted array. How can we do this? We use an
additional array. If we have a new array, it is sufficient to compare the top elements
of these two arrays, select the smaller element, and put it into the new array. We
already know that these two arrays have already been sorted, and it is sufficient
to compare the top elements in these two arrays each time, select the smaller one,
and add it as the last element of the new array.

To achieve the divide and conquer step, we can use recursive calls. When we
use recursive calls correctly, we have to give the last step for the extremely small
subproblem. In the merge sort method, it is sufficient to consider the array when
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process
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process

Original data

Data in order

Figure 3. Behavior of merge sort.

it contains only one element, and we cannot split it further. This is simple; just
return the unique element.

Example 7. We check the behavior of the merge sort algorithm using a concrete
example. Assume that the content of a given array is

15 1 5 8 9 10 2 50 40 3 2 9 10 7 33 34
Merge sort is a sorting method based on dividing and conquering by making recur-
sive calls. The array is sorted as shown in Figure 3. First, the array is divided in
two halves repeatedly until each subarray consists of one element. When the array
has been completely divided, the merging process starts. Since it is guaranteed that
any two arrays are already sorted, when its aim is to merge them, the algorithm can
eventually obtain one sorted array by merging two arrays of the previous elements.
For example, in the figure, when the algorithm merges two subarrays 1, 5, 8, 15 and
2, 9, 10, 50 (in the dotted box), it first compares the top elements of the two arrays, 1
and 2. Then, since 1 is smaller, it moves 1 to the auxiliary array, and compares the
next items, 5 and 2. Then, 2 is smaller than 5 in this case, so 2 is placed after 1 in
the auxiliary array, and the algorithm next compares 5 and 9. In this way, the algo-
rithm always compares the top elements in the two given subarrays, adds the smaller
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one at the end of the auxiliary array, and finally, it obtains 1, 2, 5, 8, 9, 10, 15, 50 in
the auxiliary array.

In merge sort, subproblems are solved recursively, and hence, information on
the first and last positions of the array to be sorted is required. We suppose that
the algorithm sorts an array a[] from index i to index j, and call a procedure of
the MergeSort(a, 1, n) style. We also suppose that this algorithm itself produces
no output, and the input array is sorted after performing the algorithm. In the
following algorithm, the variable m is the medium index of the array. More precisely,
the array a[i], a[i+1], . . . , a[j] is divided into two subarrays a[i], a[i+1], . . . , a[m] and
a[m+1], a[m+2], . . . , a[j] of the same size, which are sorted separately and merged
afterwards. In the merging process, the algorithm compares a[p] in a[i], . . . , a[m],
and a[q] in a[m + 1], . . . , a[j]. It also prepares an auxiliary array a′[] and uses
a′[i], a′[i+1], . . . , a′[j] to store the merged data. In addition, it uses a variable r for
indexing in a′[]. We also use another popular, but not beautiful, technique called
“flag” to check whether one of two arrays becomes empty. This variable flag isFlag:

As introduced in

the text, this is a

common technique in

programming where a

variable that indicates

that the status is

changed from, say, 0

to 1, is used. This

variable is called a

flag. We sometimes

use the expression

that a flag “stands”

when the value of

the flag is updated.

Maybe it comes from

the image of setting

or positioning small

flags. The idea of a

flag is useful, but it

is not very smart in

general, since it tends

to make the structure

of the program un-

tidy. If you can use

some standard control

statements, such as

while, repeat, for, and

others, it is better to

do so. It might be

better to reconsider

the structure or logic

in the program if you

cannot avoid it.

initialized by 0 and becomes 1 if one of two subarrays becomes empty.
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Algorithm 21：MergeSort(a, i, j)
Input ：An array a[1], a[2], . . . , a[n] and two indices i and j.
Output ：Array a[1], a[2], . . . , a[n], such that a[i] ≤ a[i + 1] ≤ · · · ≤ a[j] holds

(and the other range does not change).
1 if i 6= j then /* do nothing if i = j */

2 m← b(i + j)/2c ; /* m indicates the center */

3 MergeSort(a, i, m); MergeSort(a, m + 1, j) ; /* sort recursively */

4 p← i; q ← m + 1; r ← i ; /* initialize variables */

5 flag ← 0 ; /* one array becomes empty if this flag becomes 1 */

6 while flag = 0 do
7 if a[p] > a[q] then /* move the top element in the latter half */

8 a′[r]← a[q];

9 q ← q + 1;

10 if q = j + 1 then flag ← 1 ;

11 else /* move the top element in the former half */

12 a′[r]← a[p];

13 p← p + 1;

14 if p = m + 1 then flag ← 1 ;

15 end

16 r ← r + 1;

17 end

18 while p < m + 1 do /* some elements are left in the former half */

19 a′[r]← a[p];

20 p← p + 1;

21 r ← r + 1;

22 end

23 while q < j + 1 do /* some elements are left the latter half */

24 a′[r]← a[q];

25 q ← q + 1;

26 r ← r + 1;

27 end

28 copy the elements in a′[i], . . . , a′[j] to a[i], . . . , a[j];

29 end

In line 3, the algorithm sorts two divided subarrays by two recursive calls. Lines
6 to 17 deal with the first merging process, which copies smaller elements into a′[r]
by comparing the two top elements in the two subarrays. (The case where the
latter subarray has a smaller element is dealt with in lines 8, 9, and 10, and the
case where the former subarray has a smaller element (or the two elements are
equal) is handled in lines 12, 13, and 14.) This first process continues until one of
the two subarrays becomes empty. If one subarray becomes empty, the algorithm
performs lines 18 to 28. If flag ← 1 is performed in line 10, it runs in lines 18 to
22, and if flag ← 1 is performed in line 14, it runs in lines 23 to 27. That is, the
algorithm runs only one of the routines written in lines 18 to 22 or lines 23 to 27.
In this process, all the leftover elements are copied to a′[r]. The description of the
program itself is long, but it is easy to follow if you are sure of the idea of merge
sort. As shown later, the merge sort runs quite fast from not only the theoretical
but also the practical viewpoint. It runs constantly fast for any input and is also a
stable sort.
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Tip on implementation. The merge sort is relatively simple, but it requires
copying to an additional array of the same size. In the above description of the
algorithm, we use an additional array a′[] of the same size as a[]. Concretely,
given indices i and j, the algorithm divides the range from i to j into halves, sorts
them separately, and merges them by writing data to a′[i] to a′[j]. In the naive
implementation, it writes back into a[] in line 28. In other words, the algorithm
always uses a[] as a main array and a′[] as an auxiliary array. This part can be
made faster by using a neat idea. That is, we alternate a[] and a′[] as a main array
and an auxiliary array. After using a′[] as the auxiliary array and sorting the main
array a[], next we use a′[] as the main array and a[] as the auxiliary array. Then,
we no longer need the copy operation in line 28, and the number of copy operations
is halved. This small tip works effectively when the data are huge.

On the other hand, in the merge sort algorithm, avoiding this auxiliary array
in order to save memory is difficult. Namely, if you need to sort huge data, you
have to prepare an additional space of the same size, which is a weak point of merge
sort. This is one of main reasons why it is not used as frequently as the quick sort
algorithm, which is introduced in the next section.

3.3. Quick sort. The quick sort algorithm is an algorithm that in general
is used most frequently. As the name indicates, it runs quite fast. From both
the practical and theoretical viewpoint, it has some interesting properties, and we
should learn and understand the basic ideas in order to be able to use quick sort
correctly. As is the merge sort algorithm, the quick sort algorithm is based on the
idea of divide and conquer. In merge sort, we divide the array into two halves,
solve two subproblems, and merge them later. In quick sort, we divide the array
into two parts by collecting “smaller elements” into the former part, and “bigger
elements” into the latter part. More precisely, in quick sort, we arrange the array
so that each element x in the former part is less than or equal to any element y
in the latter part. Later, the array is divided into two parts. In other words, after
dividing in quick sort, the maximum element x in the former part and the minimum
element y in the latter part satisfy x ≤ y.

The key for the division is an element called the pivot. The pivot is an element
in the given array, and the algorithms use it as a point of reference to divide it into
“smaller” and “bigger” elements. The selection of the pivot is one of the main issues
in quick sort; however, meanwhile, we assume that the algorithm chooses the last
element in the array to make the explanation simple. We remark that the number
of smaller and bigger elements is not the same in general. That is, in general, the
array will be divided into two subarrays of different size. This is the key property
of quick sort. If you choose a pivot that divides the array into two subarrays of
almost same size, the algorithm runs efficiently. On the other hand, if you fail to
choose a pivot such as this and obtain two subarrays of quite different size, it seems
that sorting does not go well. We will consider this issue more precisely later.

Once the algorithm selects the pivot, p, it rearranges the array such that the
former part contains elements less than or equal to p and the latter part contains
elements greater than or equal to p. We note that elements equal to p can be
put into either the former or the latter part, according to the implementation of
the algorithm. After dividing the elements into the former and latter parts, the
algorithm places p between them in the array, and then it has three parts: the
former part, the pivot, and the latter part. Now, after making recursive calls for
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the former and the latter part, the quick sort ends. As in the merge sort method,
if the size of the array is 1, the algorithm has nothing to do. However, we have to
consider the case where the size of the subproblem becomes 0 suddenly because of
the selected pivot. This case occurs if the selected pivot is accidentally the minimum
or maximum in the array. Therefore, in the last basic part of the recursive call, the
algorithm does nothing if the size of the array is less than or equal to 1. This is the
end of the explanation of the basic idea of quick sort. The basic idea itself is not
very difficult to comprehend.

Example 8. Now we observe the behavior of the quick sort algorithm for a
concrete input. Let us assume that the array consists of the data

40 1 5 18 29 10 2 50 15
Then, the first pivot is the last element, 15. Now, the smaller elements are 1, 5,
10, and 2, and the bigger elements are 40, 18, 29, and 50. Therefore, the array is
rearranged as

1 5 10 2 15 40 18 29 50
The pivot is indicated by the underline. Hereafter, this pivot, 15, is fixed in the
array, and never touched by the algorithm. Now, two recursive calls are applied to
the former part and the latter part. Here, we consider only the former part:

1 5 10 2
Then, the next pivot is 2. The array is divided into two parts by this pivot, and we
obtain

1 2 5 10
Now, the former part contains only one element 1, and the recursive call halts for
this data item. For the latter part,

5 10,
a recursive call is applied. Then, 10 is the next pivot and is compared to 5.

While the basic idea of the quick sort method is simple, it is difficult to imple-
ment as an accurate algorithm without bugs. In fact, it is well known that some
early papers contain small bugs in their algorithm descriptions. Such bugs can
appear when a given array contains many elements of the same value; this stems
from the fact that we have some options for the boundary between the former and
the latter part. (Remember that elements of the same value as the pivot can be
put into either part.) In this paper, we introduce a simple implementation method
that handles sensitive cases appropriately.

Implementation of quick sort. The main part of the quick sort algorithm, for
two given elements a[s] and a[t], divides the array into two parts using the pivot,
which is selected as described in the previous procedure. Then, it makes two recur-
sive calls for the former part and the latter part, respectively. This implementation
is simple; a typical implementation is given below.
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a[s] p=a[t]a[i] a[j]

less than or
equal to p

not yet
processed

greater than p

Figure 4. Assertion in Partition.

Algorithm 22：QuickSort(a, s, t)
Input ：An array a[], two indices s and t with s ≤ t
Output ：The array a[] such that the part from a[s] to a[t] is sorted, and the

second part is not touched
1 if s < t then /* Do nothing if the array contains 0 or 1 element */

2 m←Partition(a, s, t) ; /* m is the index of the pivot */

3 QuickSort(a, s, m− 1);

4 QuickSort(a, m + 1, t);

5 end

The key point of the implementation of the quick sort algorithm is the procedure
named Partition. This procedure does the following. (1) Decides the pivot from
a[s] to a[t], (2) Rearranges the other elements using the pivot, and (3) Returns the
index m, such that a[m] is the correct place for the pivot. That is, after performing
the partition procedure, any element in a[s] to a[m−1] is less than or equal to a[m],
and any element in a[m + 1] to a[t] is greater than or equal to a[m]. Therefore,
after this procedure, we do not consider a[m] and sort the former part and the
latter part independently. Hereafter, we consider the details of the implementation
of the partition procedure.Assertion of a pro-

gram:

A property that

always holds in a

computer program is

called an assertion.

By maintaining rea-

sonable assertions,

we can avoid intro-

ducing bugs into our

programs.

Basically, the partition procedure using the pivot is performed from the top of
the array. We consider the details of the partition algorithm that divides the array
from a[s] to a[t] into two parts. Hereafter, we assume that the last element a[t] is
chosen as the pivot p. Using two additional variables, i and j, we divide the array
from a[s] to a[t − 1] into three parts as described below. Then, we maintain the
assertions for each of three parts:

• From a[s] to a[i]: they contain elements less than or equal to p.
• From a[i + 1] to a[j − 1]: they contain elements greater than p.
• From a[j] to a[t− 1]: they are not yet touched by the algorithm.

The states of assertions are illustrated in Figure 4. We note that this partition
has no ambiguity; each element equal to the pivot should be put into the former
part. If we can maintain these three assertions and j reaches t from s, we can swap
a[t] (pivot) and a[i + 1], and return i + 1 as the index m. A concrete example
of the implementation of Partition is given below. (Here, swap(x, y) indicates a
subroutine that swaps x and y. We have already used this in the bubble sort
method; alternatively, we can use the technique in Exercise 3.)
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Algorithm 23：Partition(a, s, t)
Input ：An array a[] and two indices s and t with s ≤ t
Output ：Divided a[] and the index of the pivot in the array

1 p← a[t];

2 i← s− 1;

3 for j ← s, s + 1, . . . , t− 1 do
4 if a[j] ≤ p then
5 i← i + 1;

6 swap(a[i], a[j]);

7 end

8 end

9 swap(a[i + 1], a[t]);

10 return i + 1;

By the assertions, during the performance of the program, the array is always
partitioned into four blocks, as shown in Figure 4 (we consider the last pivot p = a[t]
is also one block of size 1). Some of the four blocks may be of size 0 in some
cases. Including these extreme cases, we can confirm that the assertions hold during
the performance of the program with this implementation. The behavior of this
algorithm for the array

40 1 5 18 29 10 2 50 15

is depicted in Figure 5. It is not difficult to follow the processes one by one in the
figure.

3.4. Analyses and properties of sorting. In this section, we show the
properties of the three sorting algorithms, analyze their complexities, and compare
them. In particular, we need to learn well the properties of the quick sort method.
In the merge sort and quick sort methods, the description of the algorithms becomes
complicated. For example, a recursive call requires many background tasks, which
do not appear explicitly. However, such a detail is not essential from theoretical
viewpoint, and we ignore these detailed task system maintains. To compare the
three sort algorithms, we count the number of comparison operations in them. That
is, we regard the time complexity of a sorting algorithm to be proportional to the
number of comparison operations.

Analysis of bubble sort. The bubble sort algorithm is simple, and it is not
difficult to count the number of comparison operations. At the first step, in an
array of size n, to put the biggest element into a[n], it performs

• for each i = 1, 2, . . . , n − 1, compare a[i] and a[i + 1], and swap them if
a[i] > a[i + 1].

This step requires, clearly, n − 1 comparison operations. Similarly, it performs
n− 2 comparison operations to put the biggest element in the array of size n− 1 to
a[n − 1], . . .，and 1 comparison operation to put the biggest element in the array
of size 2 to a[2]. In total, it performs (n− 1) + (n− 2) + · · ·+ 2 + 1 = n(n− 1)/2
comparison operations. Using the O notation, this algorithm runs in Θ(n2) time.

The bubble sort algorithm needs a few extra variables; the space complexity
(excluding the input array) is O(1), which means that it uses a constant number of
variables. Moreover, since the algorithm does nothing when a[i] = a[i + 1], it is a
stable sort.
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a[s] p=a[t]

i=s-1;
j=s;

40 1 5 18 29 10 2 50 15

j=s+1; i=s;

401 5 10 2 50 15

swap(a[i],a[j]);

j=s+2; i=s+1;

401 5 18 29 10 2 50 15

j=s+3;

401 5 18 29 10 2 50 15

j=s+4;

401 5 18 29 10 2 50 15

j=s+5;

401 5 18 2910 2 50 15

i=s+2;

j=s+6;

401 5 182910 2 50 15

i=s+3;

j=s+7;

401 5 182910 2 50 15

401 5 18 2910 2 5015

40 1 5 18 29 10 2 50 15

swap(a[i],a[j]);

swap(a[i],a[j]);

swap(a[i],a[j]);

swap(a[i+1],a[t]);

18 29

Figure 5. Behavior of Partition.

Analysis of merge sort. For the merge sort algorithm, space complexity is easier
to determine than time complexity. It is not difficult to see that the algorithm
needs an additional array of the same size as a[n] and some additional variables.
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Therefore, the algorithm requires Θ(n) space complexity. Sometimes, this is an
issue when n is large and each element occupies many memory cells.

Next, we turn to time complexity. Figure 3 gives us an important clue for
estimating the time complexity of the merge sort algorithm. A given array of size
n is divided into two parts of the same size. Next, each subarray is again divided
into two parts of the same size, namely, we obtain four subarrays of size n/4. It
is not easy to see the time complexity if we consider each subarray, and therefore,
we consider the levels of the dividing process. That is, the first division is in level
1, and we obtain two subarrays of size n/2. In the next level 2, we obtain four
subarrays of size n/4 with two divisions. In the level 3, we obtain eight subarrays
of size n/8 with four more divisions. That is, in each level i, we apply the dividing
process 2i−1 times and obtain 2i subarrays of size n/2i. (Precisely speaking, we
have some errors if n/2i is not an integer, but we do not pay attention to this
issue here.) Eventually, if the size of the subarray becomes one, we cannot divide
it further. In other words, the division process will be performed up to the level k,
where k is an integer satisfying 2k−1 < n ≤ 2k. This implies k = dlog ne. That is,
the division process will be performed to the level dlog ne.

Then, how about the time complexity in level i? In each level, an array is
divided into two subarrays, and two subarrays are merged into one array after two
recursive calls for the subarrays. In these two processes, the first process is easy;
only the central index, which takes O(1) time, is computed. The second process is
the issue.

First, when we estimate time complexity of an algorithm, we have to count the
number of operations along the flow of the algorithm, which is determined by each
statement in the algorithm. However, in the merge sort method, it is not so easy
to follow the flow of the algorithm.

Therefore, we change our viewpoint from that of the algorithm to that of the
manipulated data. That is, we count the number of operations that deal with each
data item from the viewpoint of the data themselves. After the division in level i,
each subarray of size n/2i is merged with another subarray of size n/2i and they
together produce a new array of size n/2i−1. Here, each element in these arrays
is touched exactly once, copied to another array, and never touched again in this
level. Namely, each data item is accessed and manipulated exactly once. Therefore,
the time complexity of merging two arrays of size n/2i into one array of size n/2i−1

is Θ(n/2i−1) time.
In other words, the contribution of a subarray of size n/2i to the time complex-

ity is Θ(n/2i). Now, let us again observe Figure 3. In level i, we have 2i subarrays
of size n/2i, and each subarray contributes Θ(n/2i) to the time complexity. Thus,
in total, the time complexity at level i is Θ(n). We already know that the number
of levels is dlog ne. Hence, the total time complexity of merge sort is Θ(n log n).

As observed in Section 5, the function log n increases much more slowly than
the function n. That is, as compared to the time complexity Θ(n2) of the bubble
sort method, the time complexity Θ(n log n) of merge sort is quite a bit faster.
Moreover, the running time of merge sort is independent of the ordering of the
data, and it is easy to implement as a stable sort.

Exercise 27. Describe the points to which you should pay attention when
you implement the merge sort method as a stable sort.
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Analysis of quick sort. In the practical sense, quick sort is quite a fast algorithm
and, in fact, is used in real systems. However, since quick sort has some special
properties when it is applied, we have to understand its behavior.

The space complexity of quick sort is easy to determine. It requires a few
variables, but large additional memories are not needed if we swap data in the
array itself (we sometimes call this method “in place”). Therefore, excluding the
input array, the space complexity is O(1). In general, the quick sort method is not
stable. (For example, in the partition procedure described in this book, it finally
swaps the pivot and a[i + 1]. In this case, when a[i + 1] = a[i + 2], their ordering is
swapped and the resulting array is no longer stable.)

Then, how about time complexity? In the quick sort method, the algorithm
first chooses the pivot, and then, divides the array into two parts by comparing the
data items to this pivot. The running time depends on the size of these two parts.
Therefore, the dexterity of this choice of pivot is the key point for determining the
time complexity of the quick sort method. We consider this part step by step.

Ideal case. When does the algorithm run ideally, or as fast as it can? The answer
is “when the pivot is always the median in the array.” In this case, the array is
divided into two parts of the same size. Then, we can use the same analysis as we
used for merge sort, and the number of levels of recursive calls is Θ(log n). The
point in which it differs from the merge sort algorithm is that quick sort does not
need to merge two subarrays after recursive calls. When the algorithm proceeds to
the last case after repeating the procedure of dividing by pivots, it does not merge
the subarrays. Therefore, it is sufficient to consider the cost of the partition of the
array. When we consider its time complexity from the viewpoint of the algorithm,
it is not so easy to analyze it. However, as in the case of merge sort, it is easy
from the viewpoint of the data in the array. Each element in the current subarray
is compared to the pivot exactly once, and swapped if necessary. Therefore, the
time complexity of the division of an array of size n′ is Θ(n′). Thus, the total time
complexity is Θ(n log n), the same as that of merge sort.

Worst case. Now, we consider the worst case for the quick sort algorithm. This
case occurs when the algorithm fails to choose the pivot correctly. Specifically,
the selected pivot is the maximum or minimum value in the array. Then, this
“division” fails and the algorithm obtains one array of size 1 that contains only
the pivot and another array that contains all the remaining elements. We consider
the time complexity of this worst case. Using the first pivot, the array of size n is
divided into two subarrays of size 1 and n − 1. Then, the number of comparison
operations is n− 1, since the pivot is compared to the other n− 1 elements. Next,
the algorithm repeats the same operation for the array of size n−1; it performs n−2
comparison operations. Repeating this process, in total, the number of comparison
operations is (n − 1) + (n − 2) + · · · + 2 + 1 = n(n − 1)/2. Therefore, its running
time is Θ(n2), which is as same as that of the bubble sort algorithm.

One might think that this is an unrealistic case. In the algorithm above, we
chose the pivot from the last element in the array, which is not a good idea. For
this algorithm, suppose that the input array is already sorted. Then, certainly, we
have this sequence of the worst case. Thus, quick sort, although its implementation
is easy, is not at all quick.
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Analysis of randomized quick sort. The key point in the quick sort method
is how to choose the pivot in a given array. How can we do this? In this book,
we recommend using “random selection.” Specifically, for a given array, choose the
pivot randomly. The implementation of this randomized quick sort is quite simple:

• From the given array, select an element at random.
• Swap this selected element and the last element in this array.
• Perform the previous algorithm that uses the last element as the pivot.

Although this is a simple trick, it produces a great result.
If we select the pivot randomly, the worst case may occur with some prob-

ability. That is, we may randomly select the maximum or minimum element in
the array. This probability is not zero. Some readers may worry about this worst
case. However, we can theoretically prove that this probability is negligible. The
following theorem is interesting in the sense that it proves that a simple randomized
algorithm is powerful and attractive.

Theorem 8. The expected running time of the randomized quick sort algorithm
is O(n log n).

Proof. In general sorting algorithms, we count the number of comparison
operations between two elements in the array to determine its running time. (More
precisely, we regard the number of operations to be proportional to the running
time.) We consider the probability that the parts of any pair of elements in the array
are compared with each other in the randomized quick sort. The expected number
of comparison operations is the summation of the probabilities for all possible pairs.

We first consider the array a[1], . . . , a[n] after sorting this array. Select any two
elements a[i] and a[j] with i < j. The crucial point is that their location before
sorting or in the input array is not important. Now, we consider the probability
that a[i] and a[j] are compared with each other in the algorithm. We turn to the
behavior of the quick sort method: the algorithm picks up one element as the pivot,
and divides the array by comparing each element in the array to the pivot. That
is, a[i] and a[j] are compared with each other if a[i] and [j] are in the same array,
and one of a[i] and a[j] is selected as the pivot. On the other hand, when are a[i]
and a[j] not compared with each other? In the case where another element a[k]
between a[i] and [j] is selected as the pivot before a[i] and a[j], and a[i] and a[j]
are divided into the other arrays by comparing them with the pivot a[k].

From this observation, regardless of the first positions of this pair in the input
array, among the ordered data a[i], a[i + 1], . . ., a[j − 1], a[j] of size j − i + 1,
the probability that a[i] and a[j] are compared with each other in the algorithm
is exactly equal to the probability that either a[i] or a[j] is selected as the pivot
before any element a[k] with i < k < j. The algorithm selects the pivot uniformly
at random, and thus, this probability is equal to 2/(j − i + 1). That is, the pair
of a[i] and a[j] is compared with probability 2/(j − i + 1), and this probability is
independent of how i and j are selected.

Taking the sum of these probabilities, we can estimate the expected value of
the number of comparison operations. That is, the expected number of times two
elements are compared is given as∑

1≤i<j≤n

2
j − i + 1

=
∑

1≤i<n

∑
i<j≤n

2
j − i + 1

.
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Since (j − i + 1) takes from 2 to n− i + 1 for each i, we have

∑
1≤i<n

∑
i<j≤n

2
j − i + 1

=
∑

1≤i<n

∑
1≤k≤n−i

2
k + 1

<
∑

1≤i<n

2H(n− i)

≤
∑

1≤i≤n

2H(n) = 2nH(n).

Here, H(n) denotes the nth harmonic number, and we already know that H(n) =
O(log n). Thus, the expected value of the running time of the randomized quickChanging the base

of log:

It is known that

loga b = logc b/ logc a

for any positive real

numbers a, b, and

c. This is called

the change-of-base

formula. Under the O-

notation, we can say

that ln n = Θ(log n)

and log n = Θ(ln n).

That is, every loga-

rithmic function logc

is the same as the

other logarithmic

function logc′ up to a

constant factor.

sort is O(n log n). �

In the previous proof, we use the linearity of expectation. It is quite strong
property of expected number. To readers who are not familiar to probability, we
here give the definition of expected number and give a note about the property:

Definition of expected number� �
Suppose that you have n distinct events and, for each i = 1, 2, . . . , n, the value
xi is obtained with probability pi. Then, the expected value is defined by∑n

i=1 pixi. For example, when you roll a die, you obtain one of the values from
1 to 6 with probability 1/6. The expected value is

∑6
i=1 i/6 = (1 + 2 + · · · +

6)/6 = 21/6 = 3.5.� �
Linearity of expectation� �

In the argument in the previous proof, we have a small gap from the viewpoint
of probability theory. In fact, a more detailed discussion is needed, which is
omitted here. More precisely, we use the following property implicitly: the
expected value of a sum of random variables is equal to the sum of
the individual expectations. This property is not trivial, and we need a
proof. However, we will use this property as a fact without a proof. The reader
may check the technical term “linearity of expectation” for further details of
this notion.� �

In Theorem 8, we claim that the running time is O(n log n); however, the
expected value is in fact bounded above by 2nH(n). That is, the constant factor
in this O(n log n) is very small. This is twice as much as the ideal case. This fact
implies that the randomized quick sort runs quite quickly in a practical sense. Of
course, this value is an expected value, or average value, and it can take longer,
but we rarely have such an extreme case. This “rareness” can be discussed in
probabilistic theory; however, we stop here since it is beyond the scope of this
book.
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Efficient implementation of quick sort� �
At a glance, since the idea itself is simple, it seems to be easy to implement
the quick sort method. However, there are many tricky inputs, such as “the
array of many elements of the same value,” and it is not so easy a task to
build a real program that behaves properly for any input. The author checked
and found that there are two different styles for implementing the Partition
procedure in the quick sort method. The first, which is simple and easy to
understand and works well, is described in this text. The author borrowed this
implementation style from the well known textbook “Algorithm Introduction”
used at the Massachusetts Institute of Technology. It is easy to follow that
when this style is used, the algorithm works well for any input. The other
implementation style was proposed in many early studies in the literature on
the quick sort method. As mentioned, it is known that some program codes
in the early literature contain errors, which implies that it is not very easy to
implement this style correctly. Of course, in addition to the early studies, the
implementation based on this style has been well investigated, and the correct
implementation has now been stated and established. The author does not
explain the details in this text, since it is bit more complicated than the style
proposed in this book.
However, essentially, both implementation styles have the same framework,
and the analysis and the running time are the same from the theoretical view-
point. In both, the real program code is short and the algorithm runs quickly.
Experimental results imply that the latter (or classic) style is a bit faster. The
background and real compact implementations are discussed in “Algorithms in
C.” Readers may check the book list in Chapter 7 when they have to implement
practical algorithms.� �
Exercise 28. As explained, quick sort is a truly quick algorithm.

However, it requires some overhead processes as its background task when it makes
a recursive call. Therefore, when there are quite a few elements, simpler algorithms,
such as bubble sort, run faster. Consider how one can use the advantages of both
these sorting algorithms.

3.5. Essential complexity of sorting. In this section, three sorting algo-
rithms are introduced. The time complexities of the bubble sort, merge sort, and
quick sort methods are measured by the number of comparison operations, and we
obtain Θ(n2), Θ(n log n), and O(n log n) for each of them, respectively. First, any
algorithm has to read the entire input data as an array, and each element in the
array should be compared to some other data at least once. Therefore, no algorithm
can sort n elements in less than Θ(n) time.

As learnt in Section 5, the function log n increases much more slowly than the
function n. Therefore, the improvement from Θ(n2) to Θ(n log n) is drastic, and
Θ(n log n) is not very much slower than Θ(n). Nevertheless, there is some doubt
whether we can improve on this gap or not.

Interestingly, in a sense, we cannot further improve sorting algorithms. The
following theorem is known.

Theorem 9. When a comparison operation is used as a basic operation, no
algorithm can solve the sorting problem with fewer than Ω(n log n) operations.
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As for the lower bound of the searching problem in Theorem 7, we need some
knowledge of information theory to discuss it in detail. In this book, we do not go
into the details, and give a brief intuitive proof.

Proof. To simplify, we assume that all elements in the array a[] are distinct;
that is, we assume a[i] 6= a[j] if i 6= j. We first observe that one comparison
operation distinguishes two different cases. That is, when we compare a[i] with
a[j], we can distinguish two cases a[i] < a[j] and a[i] > a[j].

Now, we suppose that the a[1], a[2], . . ., and a[n] are all distinct. We consider
the number of possible inputs by considering only their ordering. For the first
element, we have n different cases where it is the smallest element, the second
smallest element, . . ., and the largest element. For each of these cases, the second
element has n−1 different cases. We can continue until the last element. Therefore,
the number of possible orderings of the input array is

n× (n− 1)× · · · 3× 2× 1 = n!.

Therefore, any sorting algorithm has to distinguish n! different cases using the
comparison operations.

Here, one comparison operation can distinguish two different cases. Thus, if
the algorithm uses a comparison operation k times, it can distinguish at most 2k

different cases. Hence, if it distinguishes n! different cases by using k comparison
operations, k has to satisfy n! ≤ 2k. Otherwise, if k is not sufficiently large, the
algorithm cannot distinguish two (or more) different inputs, and hence, it should
fail to sort for one of these indistinguishable inputs.

Now, we use a secret formula called “Stirling’s formula.” For some constant c,Stirling’s formula:

The precise Stir-

ling’s formula is

n! ∼
√

2πn
`

n
e

´n
. The

error of this approxi-
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present, in a rough-

and-ready manner,
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Taking the logarithm on the right hand side, we obtain

log
(
c
√

n
(n

e

)n)
= log c +

1
2

log n + n log n− n log e = Θ(n log n).

Looking at this equation carefully, we can see that, for sufficiently large n, it is
almost n log n. (More precisely, the other terms except n log n are relatively small as
compared to n log n, and hence, they are negligible.) On the other hand, log 2k = k.
Therefore, taking the logarithm of the inequality n! ≤ 2k, we obtain Θ(n log n) ≤ k.
That is, no algorithm can sort n elements correctly using comparison operations
less than Ω(n log n) times. �

3.6. Extremely fast bucket sort and machine model. In Theorem 9,
we show the lower bound Ω(n log n) of the running time for any sorting algorithm
based on the comparison operation. As in the hash function in Section 2, we have
to take care of the condition. In fact, we can violate this lower bound if we use a
sorting algorithm not based on the comparison operation. For example, suppose
that we already know that each data item is an integer between 1 and m. (This is
the same assumption as that for the simple hash function in Section 2.) We note
that this assumption is natural and reasonable for daily data, such as examination
scores. In this case, the algorithm named bucket sort is quite efficient. In the
bucket sort method, the algorithm prepares another array b[1], b[2], . . ., and b[m].
Each element b[j] stores the number of indices i such that a[i] = j. Then, after the
algorithm reads the data once, b[1] indicates the number of indices with a[i] = 1,
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b[2] indicates the number of indices with a[i] = 2, and so on. Therefore, now the
algorithm outputs b[1] 1s, b[2] 2s, . . ., b[i] is, . . ., and b[m] ms. (Or the algorithm
can write back to a[] from b[].) That is the end of the sorting. The code of the
algorithm is described below.

Algorithm 24：BucketSort(a)
Input ：An array a[1], a[2], . . . , a[n]. Each a[i] is an integer with 1 ≤ a[i] ≤ m

for some m.
Output ：Sorted data.

1 prepare an array b[] of size m;

2 for j ← 1, 2, . . . , m do
3 b[j]← 0 ; /* initialize by 0. */

4 end

5 for i← 1, 2, . . . , n do
6 b[a[i]]← b[a[i]] + 1;

7 end

8 for j ← 1, 2, . . . , m do
9 if b[j] > 0 then output j b[j] times;

10 end

Exercise 29. In line 9, the algorithm above outputs only the contents
of a[] in increasing order. Modify the algorithm to update a[] itself.

Now, we consider the computational complexity of bucket sort. First, we con-
sider space complexity. If we prepare the array b[] straightforwardly, it takes Θ(m).
We may reduce some useless space if the data are sparse, but this case does not con-
cern us. In any case, O(m) space is sufficient. Next, we consider time complexity.
It is clearly achievable by Θ(n + m) with naive implementation.

Quick sort is the sort algorithm that can be applied to any data if the com-
parison operator is well-defined on any pair of data elements. That is, if two data
are comparable and the ordering among the whole data is consistent, we can sort
the data by using the quick sort method. For example, we can sort even strings,
images, and movies if their orderings are well-defined (and it is not difficult to de-
fine a reasonable comparison operator according to the purpose of sorting.) That
is, the quick sort method is widely applicable to many kinds of data. The bucket
sort method has limitations as compared to quick sort; however, in those cases
where it can be applied, bucket sort is quite useful since it runs reasonably fast.
For example, imagine that you have to sort several millions of scores. If you know
that all the scores are integers between 1 and 100, since m� n, bucket sort is the
best choice. As you can imagine from the behavior of the algorithm, it runs almost
in the same time as that taken for just reading data.

We note that bucket sort explicitly uses the property “computer can read/write
b[i] in memory in a unit time,” which is the property of the RAM model.

Exercise 30. We consider the following algorithm named spaghetti
sort:
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Algorithm 25：SpaghettiSort(a)
Input ：An Array a[1], a[2], . . . , a[n].
Output ：Sorted array a[].

1 for i← 1, 2, . . . , n do
2 cut dry spaghetti strands to length a[i];

3 end

4 bunch all the spaghetti strands in your left hand and stand them on your table;

5 for i← 1, 2, . . . , n do
6 select the longest spaghetti strand in your right hand and put it on your table;

7 end

8 output the lengths of these spaghetti strands from one end to the other end;

Estimate the time complexity of this algorithm. Theoretically, it seems that this
algorithm runs fast; however, you do would not like to use it. Why is this algorithm
not in practical use?



CHAPTER 4

Searching on graphs

bababababababababababababababab

The notion of a graph is a mathematical concept that was introduced to
represent a network of objects. The structure of a graph is very basic, and
many problems can be modeled using graphs. In this chapter, we learn
basic algorithms for searching a graph.

What you will learn:� �
• Searching algorithms for graphs
• Reachability
• Shortest path problem
• Search tree
• Depth first search
• Breadth first search
• Dijkstra’s algorithm� �

77
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1. Problems on graphs

Have you ever seen a Web page that is public on the Internet on your personal
computer or mobile phone? Of course, you have. The Web page has a useful
function that is called a hyperlink, and you can jump to another Web page to see
it just by a click. Suppose that when you open your usual Web page you happen
to think “I’d like to see that Web page I saw last week...” You remember that you
reached that Web page by traversing a series of hyperlinks; however, you have no
memory of the route you traversed. This is nothing out of the ordinary.

Hyperlinks make up a typical graph structure. Each Web page corresponds to a
vertex in the graph, and each hyperlink joins two vertices. We do not know whether
the entire graph is connected or disconnected. Searching problems for a graph
are the problems that ask whether two vertices on a graph are reachable, that is,
whether there is a route from one vertex to another on the graph. In this section,
we consider the following three variants of the searching problem for a graph.

[Problem 1] Reachability problem:

Input: A graph G containing n vertices 1, 2, . . . , n. We assume that the
start vertex is 1 and the goal vertex is n.

Problem: Check whether there is any way that we can reach n from 1
along the edges in G. The route is not important. The graph may be
disconnected. If we can reach n from 1 on G, output “Yes”; otherwise,
output “No.”

[Problem 2] Shortest path problem:

Input: A graph G containing n vertices 1, 2, . . . , n. We assume that the
start vertex is 1 and the goal vertex is n.

Problem: We also assume that there is no cost for passing through each
edge; or we can also consider that each edge has a unit cost. Then,
the problem is to find the length of the shortest path from 1 to n.
Precisely, the length of a path is the number of edges along it. If n is
not reachable from 1, we define the length as ∞.

[Problem 3] Shortest path problem with minimum cost:

Input: A graph G containing n vertices 1, 2, . . . , n. We assume that the
start vertex is 1 and the goal vertex is n.

Problem: We also assume that each edge has its own positive cost.
Then, the problem is to find the shortest path from 1 to n with mini-
mum cost. The cost of a path is defined by the summation of the cost
of each of its edges. If n is not reachable from 1, we define the cost
as ∞.

It is easy to see that the above problems are all familiar in our daily life; they
appear in car navigation and route finder systems, and are solved every day. We
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Figure 1. Two examples of a graph.

learn how we can handle these problems and what algorithms and data structures
we can use to solve them.

2. Reachability: depth-first search on graphs

First, we consider Problem 1, which concerns the reachability in a given graph.
For a given graph with n vertices 1, 2, . . . , n, we assume that the edge set is given
by the adjacency set. That is, the set of neighbors of the vertex i is represented by
A[i, 1], A[i, 2], . . .. Hereafter, to simplify, we denote by di the number of elements in
the neighbor set of vertex i. (This number di is called the degree of vertex i.) That
is, for example, the set of neighbors of vertex 2 is A[2, 1], A[2, 2], . . . , A[2, d2]. The
number di can be computed by checking whether A[i, j] = 0 for each j = 1, 2, . . . , di

in O(di) time. Thus, we can compute it every time we need to; alternatively, we can
compute it a priori and remember it in the array d[1], d[2], . . . , d[n]. The notation
di is used for convenience, and we do not consider the details of the implementation
of this part.

Example 9. Consider the two graphs given in Figure 1. The adjacency set
A1 of graph (1) on the left and the adjacency set A2 of graph (2) on the right are
given as follows (the numbers are sorted in increasing order so that we can follow
the algorithm easily).

A1 =



2 5 6 0 0 0
1 3 4 0 0 0
2 4 7 0 0 0
2 3 5 6 0 0
1 4 0 0 0 0
1 4 0 0 0 0
3 0 0 0 0 0


, A2 =



2 5 6 0 0 0
1 5 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
1 2 0 0 0 0
1 3 0 0 0 0
4 0 0 0 0 0


.

We use the following degree sequences for each graph: For graph (1), we have
d[1] = 3, d[2] = 3, d[3] = 3, d[4] = 4, d[5] = 2, d[6] = 2, and d[7] = 1. For
graph (2), we have d[1] = 3, d[2] = 2, d[3] = 1, d[4] = 1, d[5] = 2, d[6] = 2, and
d[7] = 1. We assume that these arrays are already initialized before performing our
algorithms.
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How can you tackle Problem 1 if you do not have a computer and you have to
solve it by yourself? Imagine that you are at vertex 1, and you have a table A[1, j]
that indicates where you can go next. If I were you, I would use the following
strategy.

(1) Pick an unvisited vertex in some order, and visit it.
(2) If you reach vertex n, output “Yes” and stop.
(3) If you check all reachable vertices from vertex 1 and never reach vertex n,

output “No” and stop.

How can we describe this strategy in the form of an algorithm? First, we
prepare a way of checking whether the vertex has already been visited or not. To
do this, we use an array V [] that indicates the following. Array V [i] is initialized by
0, and vertex i has not yet been visited if V [i] = 0. On the other hand, if V [i] = 1,
this means that the vertex i has already been visited by the algorithm. That is,
we have to initialize it as V [1] = 1，V [2] = V [3] = · · · = V [n] = 0. Next, we use
the variable i to indicate where we are. That is, we initialize i = 1, and we have to
output “Yes” and halt if i = n holds. Based on the idea above, the procedure at
vertex i can be described as follows (we will explain what DFS means later).

Algorithm 26：DFS(A, i)
Input ：Adjacency set A[] and index i
Output ：Output “Yes” if it reaches vertex n

1 V [i]← 1;

2 if i = n then
3 output “Yes” and halt;

4 end

5 for j ← 1, 2, . . . , di do
6 if V [A[i, j]] = 0 then
7 DFS(A, A[i, j]);

8 end

9 end

We note that this DFS algorithm is a recursive algorithm. The main part of
this algorithm, which is invoked at the first step, is described below.

Algorithm 27：First step of the algorithm for the reachability problem DFS-
main(A)

Input ：Adjacency set A[]
Output ：Output “Yes” if it reaches vertex n; otherwise, “No”

1 for i = 2, . . . , n do
2 V [i]← 0;

3 end

4 DFS(A, 1);

5 output “No” and halt;
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Structure of an algorithm� �
Most algorithms can be divided into two parts containing respectively the
“general process” and the “first step,” which contains initialization and invokes
the first process. This is conspicuous, particularly in recursive algorithms. In
the algorithms up to this point in this book, the first step has been written
in one line; we describe this in the main text. However, in general, we need
some pre-processing including the initialization of variables. Hereafter, the
algorithms named “∗-main” represent this first step, and the general process
is located in the algorithm that has a name that does not include “main.”� �

This is the end of the algorithm’s description. Are you convinced that this
algorithm works correctly? Somehow, you do not feel sure about the correctness,
do you? Since this algorithm is written in recursive style, you may not be convinced
without considering the behavior of the algorithm more carefully. First, to clarify
the reason why you do not feel sure, we consider the conditions when the algorithm
halts. The algorithm halts when one of two cases occurs:

• When i = n, that is, it reaches to the goal vertex. Then, it outputs “Yes”
and halts.
• In the DFS algorithm, the process completes the recursive calls in line 4

without outputting “Yes.” Then, the DFS-main outputs “No” in line 5
and halts.

This would be all right in the first case. The algorithm certainly reaches the goal
vertex n through the edges from the start vertex 1. The case that causes concern is
the second case. Is the answer “No” always correct? In other words, does it never
happen that the algorithm outputs “No” even though a path exists from vertex 1
to vertex n? This is the point. To understand this in depth, we first examine two
typical cases. The first case is where the algorithm outputs “Yes.”

Example 10. We perform the algorithm at vertex 1 in graph (1) in Figure 1.
(We denote the array V by V1[] to distinguish the second example.) First, Algorithm
27 performs the initialization in lines 1 to 3 and calls the procedure DFS(A1, 1). In
DFS(A1, 1), DFS(A1, A1[1, 1] = 2) is again called in line 7. That is, it moves to
the neighbor vertex 2 from vertex 1. Then, Algorithm 26 is applied to vertex 2 and
we have the visited mark by setting V1[2] = 1. Since 2 6= n(= 7), the process moves
to line 5. First, since V1[A1[2, 1]] = V1[1] = 1, it confirms that vertex 1 had already
been visited; thus, it does not call DFS (in line 7) for this vertex 1. Next, since
V1[A1[2, 2]] = V1[3] = 0, it finds that vertex 3 has not already been visited, calls
DFS(A1, A1[2, 2]) in line 7, moves to vertex 3, and so on. Namely, it continues to
check V1[], and does not visit it if it has already been visited; otherwise, it visits this
vertex. In this graph, the algorithm visits in the order

vertex 1→ vertex 2→ vertex 3→ vertex 4→ vertex 5→ vertex 6→ vertex 7

and outputs “Yes” when it visits the last vertex 7.

Next, we turn to the second example, that is, the “No” instance.

Example 11. We perform the algorithm at vertex 1 in graph (2) in Figure 1.
(We denote the array V by V2[] this time.) As before, the algorithm visits vertices
1, 2, and 5. When it visits vertex 5, it finds it has no more unvisited vertices
from vertex 5. Then, the searching process in DFS(A2, A2[2, 2]) ends, and returns
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to vertex 1. This time, the DFS(A2, A2[1, 1]) is called in line 7 of Algorithm 26.
In the next step, DFS(A2, A2[1, 2]) is not called because V2[A2[1, 2]] = V2[5] = 1.
Then, DFS(A2, A2[1, 3]) is called since V2[A2[1, 3]] = V2[6] = 0, and the algorithm
moves to vertex 6. Then, it moves to vertex 3 from vertex 6, and finds that there
are no longer any unvisited vertices from vertex 3. Thus, this procedure call returns
to vertex 1; no more unvisited vertices exist, and hence the output is “No.”

You can understand this case in depth if you follow these “Yes” and “No”
examples. Now we turn to the following case. The algorithm outputs “No” for
some reason, although it is possible to reach from vertex 1 to vertex n. Does this
case never happen? The answer is never. It is not trivial, and so we here show the
proof of this fact.

Theorem 10. The DFS algorithm for the reachability problem is certain to
output “Yes” when it is possible to reach from vertex 1 to vertex n; otherwise, the
output is “No.” In other words, this algorithm works correctly.

Proof. First, we check that this algorithm always halts in finite time regard-
less of its output. It is clear that the algorithm always halts after two for state-
ments. Therefore, we focus on the recursive call for DFS. There are two recursive
calls that the algorithm makes (line 7 in DFS and line 4 in DFS-main). In both
cases, DFS[A, i] is called for some i satisfying V [i] = 0. Then, immediately after-
wards, V [i] ← 1 is performed at line 1 in DFS. Thus, once this recursive call has
been made for index i, the recursive call for DFS will be never performed for this
i again. On the other hand, the integer variable i takes its value with 1 ≤ i ≤ n.
Therefore, the number of recursive calls in this algorithm is bounded above by n.
Thus, this algorithm always halts with at most n recursive calls. The algorithm can
halt at line 3 in DFS and at line 5 in DFS-main, and hence, the algorithm outputs
either “Yes” or “No” when it halts.

We first consider the case where the algorithm outputs “Yes.” In this case, the
correctness of the algorithm is easy to see. From the construction of the algorithm,
we can join the variables in the recursive calls of DFS and obtain the route from
vertex 1 to vertex n.

Next, we assume that the algorithm outputs “No” as the answer. Here, we have
the problem “Is this answer ‘No’ certainly correct?” We prove the correctness by
contradiction. We assume that there exists a graph G that includes a path joining
vertices 1 and n, and the DFS-main algorithm fails to find it and outputs “No.”
Let P be the set of visited vertices during the journey that the algorithm traverses
on G. Then, P contains vertex 1 by definition, and does not contain vertex n by
assumption. On the other hand, since we assume that we can reach vertex n from
vertex 1, there is a path Q joining vertices 1 and n (if there are two or more, we
can select any one of them). Path Q starts from vertex 1 and ends at vertex n.
We have common elements that belong to both P and Q; at least, vertex 1 is one
of the common elements. Among the common elements of P and Q, let i be the
closest vertex to n in Q. Since i belongs to P and P does not contain n, i is not n.
Let k be the next vertex of i on Q (we note that k itself can be n). Then, by the
assumption, P contains i, but does not contain k (Figure 2).

Now, P is the set of vertices visited by DFS. Thus, during the algorithm,
DFS(A, i) should be called. In this procedure, for each neighbor A[i, j](j = 1, 2, . . . , di)
of vertex i, the algorithm calls DFS(A,A[i, j]) if V [A[i, j]] = 0, that is, if vertex
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Figure 2. Correctness of the algorithm for the reachability problem.

A[i, j] has not already been visited. Vertex k is one of the neighbors of i, and hence,
A[i, j′] = k should hold for some j′, which means that DFS(A, k) should be called
for this j′. This is a contradiction. Thus, such a vertex k does not exist.

Therefore, when vertex n is reachable from vertex 1, the DFS algorithm should
find a path from 1 to n and output “Yes.” �

We here also state a theorem about the time complexity of the DFS algorithm.

Theorem 11. For a graph of n vertices with m edges, the DFS algorithm solves
the reachability problem in O(n + m) time.

Proof. By careful observation of the DFS algorithm, it can be seen that the
crucial point is the estimation of the time complexity of the for loop. We can
consider this part as follows. Let us consider an edge {i, j}. For this edge, the algo-
rithm performs the for loop at vertex i and another for loop at vertex j. This edge
had never been touched by another for loop. Therefore, the total time complexity
consumed by the for loops for each vertex can be bounded above the number of
edges up to constant. (A similar idea can be found in the proof of Theorem 3.)
Therefore, summing the total running time O(n) for each vertex, the entire running
time is O(n + m). �

2.1. Search trees and depth-first search. Finally, we mention that why
the search method introduced in this section is called DFS. DFS is an abbreviation
of “depth first search.” Then, what is searching in “depth first” style? We have
to learn about “search trees” to know what “depth first” means. We here focus
on the ordering of visits. What property does the ordering of visited vertices by
the DFS algorithm have? Hereafter, we assume that the input graph is connected,
since the DFS algorithm visits only the vertices in a connected component of the
input graph.

At the beginning of the search, we start from vertex 1. Therefore, each of the
other vertices i with i 6= 1 is visited from another vertex if the graph is connected.
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Figure 3. Search tree in the graph in Figure 1(1) obtained by
applying the DFS algorithm.

Let j be the vertex from which the algorithm first visits vertex i. That is, the DFS
algorithm was staying at vertex j, and visits vertex i the first time through edge
{j, i}. For each vertex from 2 to n, we can consider such an edge for visiting each
of them the first time. Vertex 1 is the only exception, having no such edge, because
it is the vertex from which the DFS algorithm starts. Thus, the number of such
edges for visiting the first time is n − 1, and the graph is connected. Therefore,
using Theorem 4, these edges form a tree in the input graph.

In this tree, vertex 1 is a special vertex. That is, the DFS algorithm starts
from vertex 1 and visits all the vertices along the edges in this tree. This tree is
called the search tree, and this special vertex 1 is called the root of the search
tree. It is useful that we assign the number to each vertex in the tree according to
the distance from the root. This number is called the depth of the vertex. The
depth is defined by the following rules. First, the depth of the root is defined by 0.
Then, the depth of the neighbors of the root is defined by 1. Similarly, the depth
of a vertex is i if and only if there is a path of length i from the root to the vertex
on the tree.

We now consider the ordering of the visits of the DFS algorithm on the search
tree from the viewpoint of the depth of the tree. The algorithm starts searching
from vertex 1 of depth 0 and selects one neighbor (vertex 2 in Figure 1(1)) of root 1.
The next search target is the neighbor of this vertex 2 of depth 1. In Figure 1(1),
vertex 3 is selected as the next vertex of vertex 2, and this vertex 3 has depth
2, and so on. The search tree obtained by the DFS algorithm on the graph in
Figure 1(1) is described in Figure 3. The search tree of the DFS algorithm is drawn
in bold lines. Vertex 3 is visited as of depth 2, and vertices 4 and 7 are both visited
as of depth 3. On the other hand, we can consider another method of searching;
for example, in Figure 3, after visiting vertex 2, the algorithm may visit vertices
5 and 6. Namely, the algorithm first checks all the neighbors of the root before
more distant vertices. However, the DFS algorithm, although there exist unvisited
vertices of smaller depth, gives precedence in its search to more distant or deeper
vertices. This is the reason why this algorithm is called “depth first search.”

Of course, the other method of searching, that is, searching all the vertices of
depth 1 after checking the vertex of depth 0, before checking more distant vertices,
gives us another searching option. While DFS prefers the depth direction for visiting
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the vertices in the tree, the second search method prefers the width or breadth
direction for searching. This method is called Breadth First Search; however,
we will discuss the details of this algorithm in the next section.

Exercise 31. In the example in Figure 3, the DFS algorithm outputs
“Yes” and halts when it reaches vertex 7. We now remove the line for output “Yes”
from the algorithm and run it. Then, the algorithm, in any case, halts at output
“No” after visiting all the vertices in the graph. Now, when we run this modified
algorithm on the graph given in Figure 1(1), what search tree do we obtain in the
graph?

3. Shortest paths: breadth-first search on graphs

Next, we turn to Problem 2, which is to find the shortest path. Since it is
trivial when n = 1, hereafter we assume that n > 1. This time, we have to find
not only reachable vertices, but also the length of the shortest path from the start
vertex 1 to the goal vertex n.

To consider how to solve this problem, imagine that we are inside vertex 1. A
natural idea is to explore the neighbor vertices of distance 1 from vertex 1 since
they are reachable from the vertex 1 directly. If we find the goal vertex n in the set
of vertices of distance 1 from vertex 1, we are done. Otherwise, we have to check
the set of vertices of distance 2 from vertex 1 from each neighbor of vertex 1, and so
on. In this manner, we can find the shortest path from vertex 1 to the goal vertex
n. Therefore, briefly, we can solve the problem as follows.

(1) Visit each of the unvisited vertices in the order of their proximity to the
start vertex 1.

(2) If we arrive at the goal vertex n, output the distance to it and halt.
(3) If we visit all reachable vertices, and still do not reach the goal vertex n,

output ∞ and halt.

In comparison to the reachability check, the key point is that we seek from
the vertices closer to the start vertex 1. We now consider the search tree for this
algorithm. The root is still vertex 1, which is not changed. The algorithm first
sweeps all the vertices that are neighbors of 1, and hence, are connected to the
root on the search tree; hence, they have depth 1 on the search tree. Similarly, the
algorithm next checks all the vertices that are neighbors of the vertices of distance
1 from the root, or of depth 1 in the search tree, and hence, each is connected to
some vertex of distance 1. That is, the next vertices are of distance 2 from the
root, and also of depth 2 on the search tree. Therefore, each vertex of depth i on
the search tree is of distance i from the root on the original graph.

At a glance, one may think that we need a complicated data structure to
implement this algorithm; however, this is not the case. At this point, we have to
think carefully. Then, we can see that we can achieve this ordering of searching
easily using the queue data structure. That is, the algorithm first initializes the
queue with the start vertex 1. After that, the algorithm picks up the top element
in the queue, checks whether the vertex i is n or not, and pushes all unvisited
neighbors of i into the queue if i is not n.

We consider the general situation of this queue. From the property of the
queue, we can observe the following lemma.
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Figure 4. Applying the BFS algorithm on the graph in Fig-
ure 1(1): transitions of the queue and the resulting search tree.

Lemma 12. For each d = 0, 1, 2, . . ., the algorithm will not process the vertices
of a distance greater than d before processing all vertices of distance d.

We can prove the lemma precisely by an induction on d; however, the following
intuitive explanation is sufficient in this book. We assume that there are some
vertices of distance d in the front part of the queue. (Initially, we have only one
vertex 1 of distance 0 in the queue.) If some vertices of distance d have been
searched, their unvisited neighbors of distance d + 1 are put in the latter part of
the queue. In this situation, there are no vertices of distance less than d, and
there are no vertices of distance greater than d + 1. It is not very easy to prove
this fact formally, but it is clear when you consider the statement in Lemma 12.
The correctness of this search algorithm relies on the property stated in Lemma
12. The queue data structure is effective for achieving this property. Once we
have initialized the queue by vertex 1 of distance 0, the above ingenuous property
immediately appears when the queue is used.

Example 12. We consider what happens on the graph on the left in Figure 1
when we apply the algorithm. First, the queue is initialized by vertex 1. The algo-
rithm picks it up, checks it, and confirms that it is not the goal vertex 7. Therefore,
the algorithm pushes the unvisited vertices 2, 5, and 6 into the queue. Next, it
picks up vertex 2 and confirms that it is not vertex 7. Thus, it pushes the unvisited
neighbors 3 and 4 of 2 into the queue (after the vertices 5 and 6). Then, it picks
up the next vertex 5, checks whether it is vertex 7 or not, and pushes the unvisited



3. SHORTEST PATHS: BREADTH-FIRST SEARCH ON GRAPHS 87

neighbors to the end of the queue. The transitions of the queue and the depths of
the vertices are depicted in Figure 4(1). The vertices are described by the numbers
in the boxes, and the top of the queue is the left hand side. The numbers over the
boxes are the depths of the vertex, that is, the distance from the root. The bold lines
in Figure 4(2) show the resulting search tree.

We here mention one point to which we should pay attention. Let us consider
the viewpoint at vertex i. Once this vertex i is put into the queue, it will proceed
in the queue, and in its turn, it will be checked as to whether it is the vertex n or
not. The point to which we have pay attention is that it is inefficient to put this
vertex i into the queue two or more times. (In fact, this can be quite inefficient in
some cases. If you are a skillful programmer, this is a nice exercise to find such a
case.) Let d be the distance from root 1 to vertex i. By Lemma 12, this inefficiency
may occur if vertex i has two neighbors, say j and k, of distance d− 1.

More precisely, an inefficient case may occur as follows. When two distinct
vertices j and k of distance d− 1 are both adjacent to vertex i of distance d, both
vertices j and k may push vertex i into the queue. In Figure 4, once vertex 4 is
put into queue, we have to avoid being put it again by vertices 3, 5 and 6 as their
neighbors. To avoid pushing vertex into the queue two or more times, let us prepare
another array C[]. For each vertex i, C[i] is initialized by 0. That is, if C[i] = 0,
vertex i has not yet been pushed into the queue, and we define that C[i] = 1 means
that vertex i has already been pushed into the queue. Once C[i] has been set at
1, this value is retained throughout the algorithm. Each vertex ` should push its
neighbor i into the queue if and only if i is unvisited and C[i] = 0. When vertex i is
pushed into the queue, do not forget to update C[i] = 1. When we check the DFS
algorithm carefully, we can see that we no longer need the array V [] to keep the
information if “the vertex has already been visited.” Each vertex i in the queue,
unless vertex n exists before it, will be visited at some time, and this information
is sufficient, even without V [].

At this time, the algorithm should output not only “Yes” or “No,” but also the
length of the shortest path to vertex n. Therefore, we use another array, say D[],
to store the length of the shortest path to each vertex i. That is, D[i] = d means
that we have the shortest path from vertex 1 to vertex i of length d. This value is
set when the algorithm visits vertex i the first time, or when C[i] is set at 1 we do
not need to initialize it.

We now consider what happens if the algorithm cannot reach vertex n. With
the same argument as that of the DFS algorithm, all reachable vertices from vertex
1 will be put into the queue. Therefore, if the queue becomes empty without vertex
n being found, this implies that the desired answer is “∞.”

Based on the above discussion, the general case can be processed as follows.
Note that the queue Q is one of arguments. (We will explain why this algorithm is
named “BFS.”)
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Algorithm 28：BFS(A,Q)
Input ：Adjacent set A[], queue Q
Output ：The (shortest) distance from vertex 1 to vertex n

1 i← pop(Q);

2 if i = n then
3 output D[i] and halt;

4 end

5 for j ← 1, 2, . . . , di do
6 if C[A[i, j]] = 0 then
7 push(Q, A[i, j]);

8 C[A[i, j]]← 1 ; /* Vertex A[i, j] is put into the queue */

9 D[A[i, j]]← D[i] + 1 ; /* We can reach j from i in 1 step */

10 end

11 end

The main part of this algorithm is as follows.

Algorithm 29：BFS-main(A)
Input ：Adjacency set A[]
Output ：Distance to vertex n if it is reachable; otherwise, “∞”

1 for i = 2, . . . , n do
2 C[i]← 0;

3 end

4 C[1]← 1;

5 D[1]← 0;

6 push(Q, 1);

7 while sizeof(Q) 6= 0 do
8 BFS(A, Q);

9 end

10 output ∞ and halt;

Exercise 32. In the BFS algorithm, two arrays C[] and D[] are used.
When C[i] = 0, vertex i has not yet been placed into the queue, and C[i] = 1
indicates that vertex i had been placed into the queue. When C[i] = 1, the value of
D[i] gives us the length of the shortest path from vertex 1 to vertex n. Somehow,
this seems to be redundant. Consider how can you implement these two pieces of
information using one array. Is it an “improvement?”

Exercise 33. The above BFS algorithm outputs the distance of the
shortest path to vertex n. However, it is natural to desire to output the shortest
path itself. Modify the above BFS algorithm to output one shortest path itself. It is
natural to output the path from vertex 1 to vertex n; however, it may be reasonable
to output the path from vertex n to vertex 1, namely, to output the path in the
reverse order.

Exercise 34. Prove the following two claims.
(1) The BFS algorithm certainly outputs the length of the shortest path if

vertex n is reachable from vertex 1 on the graph.
(2) The running time of the BFS algorithm is O(n+m), where n is the number

of vertices and m is the number of edges.
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For the first claim, we can use an induction for the length of the shortest path. In
this case, use Lemma 12 for the property of the queue. The proofs of Theorem 10
and Theorem 11 are helpful.

We here mention the name of this algorithm, “BFS.” BFS stands for Breadth
First Search. This algorithm first checks the root vertex 1 and then seeks all
the vertices of depth 1, that is, all the neighbors of the root. Then, it proceeds to
seek all the vertices of depth 2. In this manner, in the search tree, this algorithm
proceeds to the next depth after searching all the vertices of the same depth. This
can be regarded as a manner of searching that prefers to search in the “breadth”
direction. Here, check again the search tree in Figure 4.

4. Lowest cost paths: searching on graphs using Dijkstra’s algorithm

We finally turn to the last problem, that is, finding the path of the lowest cost.
This problem is more difficult than the previous two. Since each edge has its cost,
we have to consider a detour that may give a lower total cost. The representative Edsger Wybe Dijk-

stra; 1930–2002:

Dijkstra’s algorithm

was conceived by

Edsger W. Dijkstra,

who was a computer

scientist well known

for this algorithm.

algorithm for this problem is called Dijkstra’s algorithm. In this section, we
learn this algorithm.

Dijkstra’s algorithm is an algorithm for computing the minimum cost from the
start vertex 1 to the goal vertex n. We first prepare an array D[] for storing this
cost, which is initialized as D[i] = ∞ for each i. In the final step, D[i] stores the
minimum cost to this vertex i from vertex 1. The cost for a path is defined by the
summation of the cost for each edge in this path. We also note that each cost of an
edge is a positive value. We assume that each cost of an edge {i, j} is given by an
element of an array c(i, j). For convenience, we define it as c(i, j) = ∞ if there is
no edge between these two vertices. Since every cost is positive, we have c(i, j) > 0
for each i 6= j. We also define the cost as c(i, i) = 0 for all i. That is, we can
move from one vertex to itself with no cost. Moreover, since we are considering an
undirected graph, we have c(i, j) = c(j, i) for any pair.

We first consider some trivial facts in order to consider the difficulty of the
problem. What are the trivial facts that we can observe? For moving from the
start vertex 1 to itself, the cost is trivial, namely, the cost of moving to vertex
1 should be the minimum cost 0. Since all costs on edges are positive, we can
make no more improvements. That is, D[1] is definitely determined as 0. What
next? We consider the neighbors of vertex 1 to which we can move in one step. We
focus on the costs on these edges. Let i be the neighbor of vertex 1 that has the
minimum cost among all the edges incident to vertex 1. Then, this cost c(1, i) is
the minimum cost of moving to vertex i from vertex 1. The reason is simple. If we
move to another vertex to save the cost, then the cost is greater than or equal to
the cost c(1, i). (We remember the cost of each edge is positive, which means that
the cost of this detour is not improved by passing more edges.) Therefore, among
the neighbors of the vertex 1, for the vertex i that has the minimum cost c(1, ∗),
we have D[i] = c(1, i).

Example 13. The above observation can be seen in Figure 5(1). We can
confirm D[i] = c(1, i) = 2 for vertex i, since it has the minimum cost among all the
edges incident to vertex 1. As yet, we have no idea about the other vertices, since
some cheaper detours may exist.
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Figure 5. Behavior of Dijkstra’s algorithm.

Now we have to consider the issue more carefully. The next vertices that can
be considered are the neighbors of the vertices 1 and i. Then, we have three sets of
vertices, that is, the vertices only adjacent to vertex 1, the vertices only adjacent to
vertex i, and the vertices adjacent to both. Of course, we have to consider all the
vertices in these three sets. Then, what do we have to compare this with? For the
vertices j′ adjacent to only vertex 1, is it sufficient to consider the costs c(1, j′)?
No, it is not. Possibly, there may be a cheaper detour starting from vertex i to
vertex j′. In this case, of course, it takes additional cost c(1, i); however, it may be
worthwhile. In Figure 5(1), we have an edge of cost 1 from vertex i to the upper
right direction. This cheap edge may lead us to vertex j′ with a cost lower than
c(1, j′). We have a problem.

We consider the potential detour calmly. If there exists a cheaper detour that
passes through vertex i, the cost of the neighbor of vertex i on the detour should
be low, and this cost is less than c(1, j′).

Investigating this point, we see that to “the nearest” neighbor vertex of both
vertices 1 and i, we have no cheaper detour since we do know the shortest route
to these vertices 1 and i. Therefore, we can compute the minimum cost to this
nearest neighbor. That is, we can conclude that the next vertex j to the ver-
tices 1 and i for which we can compute the shortest path is the one that has
the minimum cost to it from 1 and i. Precisely, this vertex j has the mini-
mum value of min{c(1, j), c(1, i) + c(i, j)} for all the neighbors of vertices 1 and
i. (Here, min returns the minimum value of the parameters, that is, the minimum
value of c(1, j) and c(1, i) + c(i, j), in this case. Precisely, this vertex j satisfies
min{c(1, j), c(1, i) + c(i, j)} ≤ min{c(1, j′), c(1, i) + c(i, j′)} for any other vertex j′

in the neighbors of vertices 1 and i.) Thus, we have to find the vertex j with this
condition and let D[j] = min{c(1, j), c(1, i) + c(i, j)}.

Example 14. When the above discussion is applied to the case in Figure 5(1),
we can determine vertex j as in Figure 5(2) and D[j] = c(1, i)+ c(i, j) = 2+1 = 3.
We cannot yet fix D[] for the other vertices.

Thus far, we have a set S = {1, i, j} of vertices for each of which we have
computed the shortest route with the minimum cost from vertex 1. We can extend
the above idea to the other vertices. First, we summarize the procedure we followed
to find the next vertex to be computed using extendable notations.

• First, for the start vertex 1, D[1] = c(1, 1) = 0 is determined. Let S = {1}.
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• Next, we find the minimum vertex i with respect to c(1, i), and D[i] =
c(1, i) is determined. The set S is updated to S = {1, i}.
• Then, we find the minimum vertex j with respect to min{D[1]+c(1, j), D[i]+

c(i, j)}, and D[j] = min{D[1] + c(1, j), D[i] + c(i, j)} is determined. The
set S is updated to S = {1, i, j}.

In the last step, D[1] = 0 is added to the summation to clarify the meaning of the
equation. We also replace c(1, i) with D[i] in this context. That is, in the general
step, we have to find the “nearest” neighbor to the set of the vertices for which
the minimum costs have already been computed. Then, we compute the minimum
cost to the new nearest neighbor and add the vertex to the set S as the new one
for which the minimum cost is fixed.

Therefore, the procedure for the general case can be described as follows.
• Find the closest neighbor vertex j to the set S of the vertices for which

the minimum cost of the path to them from the start vertex 1 has already
been computed. More precisely, find the vertex j that has the minimum
value of mini∈S{D[i] + c(i, j)} among all vertices j 6∈ S. The notation of

min:

The notation

mini∈S{D[i] + c(i, j)}
means the minimum

value of D[i] + c(i, j)

for each vertex i in

the set S. It may be

difficult to see at the

first time; however, it

is concise and useful

if you become familiar

with it.

• For the vertex j with the minimum cost mini∈S{D[i] + c(i, j)}, store it to
D[j], and add j to the set S.

Note that we take the minimum value twice. That is, we essentially compute a
shortest route to each vertex not in S, and find the nearest vertex among them.

We are now sure about the basic idea of the algorithm. However, when we try
to describe this idea in detail in the form of an algorithm that can be realized as a
computer program, we have to fill some gaps between the idea and the algorithm’s
description. In particular, when we aim to implement this idea as an efficient
algorithm, there is still room for using devices.

We here introduce some useful tips for the implementation of Dijkstra’s algo-
rithm. First, in addition to set S, we will use another set S̄ of vertices that are
adjacent to some vertices in S and are themselves not in S. In the above discussion,
we considered the nearest neighbor vertex j to some vertex in S that consists of
vertices, the costs of which have been already computed. Vertex j should be in this
S̄. That is, when we seek vertex j with the condition, it is sufficient to search it
only in S̄, and we can ignore the other vertices in V \ (S ∪ S̄).

In the above discussion, we used an array D[] to store the cheapest cost D[i]
from vertex 1 to vertex i, but we can make full use of this array not only for finding
the final cost. More specifically, for the vertices i, the array D[i] can store tentative
data as follows.

• When i is a vertex in S, as already defined, D[i] stores the cheapest cost
from vertex 1 to vertex i.
• When i is a vertex not in (S ∪ S̄), we set D[i] =∞.
• When i is a vertex in S̄, the array D[i] stores the cheapest cost from vertex

1 to vertex i through the vertices only in S ∪ {i}.

Example 15. We confirm the data structure in the graph in Figure 6. In the
figure, the set S = {1, 2, 4} is the set of vertices for which the minimum costs have
been computed. Precisely, we have already D[1] = 0, D[2] = 2, and D[4] = 3, which
are the solutions for these vertices. Then, the set S̄ is the set of neighbors of some
elements in S, and hence, S̄ = {5, 6, 7, 8, 9}. For vertex 5, the tentative cheapest
cost is D[5] = 4, which is easy to compute. For vertex 6, we go through only the
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Figure 6. Progress of Dijkstra’s algorithm.

vertices in S ∪ {6} and we have D[6] = 8 so far. We can observe that this cost can
be reduced by passing vertex 7. That is, this D[6] will be improved in some future
step. For vertex 7, the minimum cost is given by passing vertex 2 and hence we
have D[7] = 4. Similarly, we have D[8] = 6 and D[9] = 7 for vertices 8 and 9,
respectively. For vertex 3, we have D[3] =∞ for this S (and S̄).

Using these data sets S, S̄ and D, the required operations of the algorithm can
be summarized as follows.

Initialization: For a given graph, it lets S = {1}, S̄ = {i | vertex i adjacent to
the vertex 1}, and sets the array D as

D[1] = 0
D[i] = c(1, i) for each i ∈ S̄

D[j] = ∞ for each j 6∈ S ∪ S̄.

General step: First, find the vertex j in S̄ that takes the minimum value mini∈S{D[i]+
c(i, j)} among mini∈S{D[i] + c(i, j′)} for all the vertices j′ in S̄. Set D[j] as this
minimum cost mini∈S{D[i] + c(i, j)}, and add j into S. In this case, D[j] is fixed
and will no longer be updated.

When the algorithm adds j into S, we have two things to do:
• Add the neighbors of the vertex j not in S̄ into S̄.
• Update D[i′] for each vertex i′ satisfying D[i′] > D[j] + c(j, i′).

We give a supplementary explanation for the second process. Intuitively, by reason
of adding j into S, we obtain a cheaper route to vertices i′. We have two types of
such vertices; one has already been in S̄, and the other is added to S̄ only in the first
process. (Note that no vertex in S is updated since there routes have been already
fixed.) For each vertex i′ just added into S̄ in the first process, since D[i′] =∞, we
can update D[i′] = D[j] + c(j, i′) immediately. If vertex i′ has been in S̄ already,
we have to compare D[i′] with D[j] + c(j, i′), and update if D[i′] > D[j] + c(j, i′).

4.1. Implementations of Dijkstra’s algorithm. Now we understand Di-
jkstra’s algorithm and the data structure that we need to perform the algorithm.
In this section, we describe more details that allow us to implement it in a real
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program. However, unfortunately, using only the data structures included in this
book, we cannot implement a Dijkstra algorithm that runs “efficiently.” Therefore,
we describe an implementation example using the data structures included in this
book, and where we have a gap that can be improved. For advanced readers, it
is a nice opportunity to investigate what data structure allows us to improve this
implementation.

First, we consider the implementation of the sets S and S̄. When we consider
that there are some attributes belonging to each vertex, we can realize these sets
by an array s[]. More specifically, we can define that vertex i is not in any set when
s[i] = 0, s[i] = 1 means vertex i is in S̄, and s[i] = 2 means i is in S. That is, each
vertex i is initialized as s[i] = 0 and it changes to s[i] = 1 at some step, and finally
when s[i] = 2, the value D[i] is fixed.

The crucial problem is how we can implement the following two processes cor-
rectly.

• The process for finding vertex j in S̄ that achieves the minimum value of
mini∈S{D[i] + c(i, j)}.
• After finding j above, the process involved when adding j into S.

We tentatively name the processes the function FindMinimum and the subrou-
tine Update, respectively. Then, the main part of the Dijkstra algorithm can be
described as follows.

Algorithm 30：Dijkstra(A, c)
Input ：Adjacent set A[] and cost function c[]
Output ：Minimum cost D[i] to each vertex i from vertex 1

1 for i = 1, . . . , n do
2 s[i]← 0;

3 end

4 D[1]← 0 ; /* Minimum cost to vertex 1 is fixed at 0. */

5 s[1]← 2 ; /* Vertex 1 belongs to set S */

6 for j = 1, . . . , d1 do
7 s[A[1, j]]← 1 ; /* Put all neighbors of vertex 1 into S̄ */

8 D[A[1, j]]← c(1, A[1, j]) ; /* Initialize by tentative cost */

9 end

10 while |S| < n do
11 j ←FindMinimum(s, D, A);

12 Update(j, s, D, A);

13 end

14 output D[n];

This algorithm halts when all the vertices have been put into set S. Of course,
it is sufficient that it halts when the goal vertex n is put into S. Here, we compute
the minimum costs to all the vertices for the sake of simplicity. Hereafter, we
consider how we can implement the function FindMinimum and the subroutine
Update.

Function FindMinimum: In this function, we have to find the vertex j from
S̄ that gives the minimum value of mini∈S{D[i] + c(i, j)} for all vertices in S̄. It
is easier to see by changing the viewpoint to that of the edges to compute this
value. That is, if we can find an edge (i, j) such that i is in S, j is not in S,
and D[i] + c(i, j) takes the minimum value among all edges (i′, j′) with i′ ∈ S and
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j′ 6∈ S, this j not in S is the desired vertex. Therefore, the following algorithm
computes this function simply. The variable min keeps the current minimum value
of D[i] + c(i, j), and the variable jm keeps the current vertex that gives the value
of min. We have to initialize min by ∞. The variable jm does not need to be
initialized since it will be updated when min is updated.

Algorithm 31：Function FindMinimum(s, D, A)
Input ：s[], D[], A[]
Output ：Vertex j that gives mini∈S{D[i] + c(i, j)}

1 min←∞;

2 for i = 1, . . . , n do
3 if s[i] = 2 then /* vertex i is in S */

4 for j = A[i, 1], . . . , A[i, di] do
5 if s[j] = 1 then /* vertex j is in S̄ */

6 if min > D[i] + c(i, j) then
7 min← D[i] + c(i, j);

8 jm ← j;

9 end

10 end

11 end

12 end

13 end

14 return jm;

The running time of the algorithm does not concern us. This algorithm may
touch every vertex and every edge in constant time, and therefore, the running time
of one call of FindMinimum is O(n + m). In this implementation, there are two
points involving redundancy that can be improved:

• In the algorithm, it checks every edge; however, it needs to check only
each edge of which one endpoint is in S and the other is in S̄.
• The function FindMinimum is called repeatedly, and at each call, it com-

putes D[i]+ c(i, j) for all edges, finds the edge {i, j} having the minimum
value, and discards all the values of D[i] + c(i, j). When the algorithm
finds the edge {i, j}, it updates the information around the vertex j and
its neighbors by calling Update. This update propagates only locally
around vertex j. That is, when the function FindMinimum is called the
next time, for almost all edges, D[i] + c(i, j) is not changed from the last
time.

Therefore, one reasonable idea is to maintain only the edges joining the sets S and
S̄ in a linked list structure. Then, in each step, if we maintain the neighbors of the
modified edges with the least cost, we can reduce the running time for the function
FindMinimum. More precise details of this implementation and the improvement
of time complexity are beyond the scope of this book and so we stop here.

Subroutine Update: In this subroutine, we have to move vertex j from set S̄ to
set S. This process itself is easy; we just update s[j] = 1 to s[j] = 2. However, we
have to handle the associated vertices k adjacent to vertex j. For them, we have
to consider three cases:

• The vertex k is already in S: In this case, we already have the least cost
in D[k], and we have nothing to do.
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• The vertex k is in S̄: In this case, since the edge {j, k} may give a short
cut to the vertex k, we have to update D[k] to D[j]+c(j, k) if D[j]+c(j, k)
is less than the current D[k].
• The vertex k is not in both S and S̄: In this case, the edge {j, k} gives us

a tentative shortest route to the vertex k, and hence, we can set the new
cost D[j] + c(j, k) to D[k].

At a glance, these three cases are complicated. However, when we consider the two
points

• All D[k]s are initialized by ∞ at first, and
• D[k] gives the least cost if vertex k is already in S,

the following one process correctly deals with the above three cases simultaneously.

• If D[k] > D[j] + c(j, k), let D[k] = D[j] + c(j, k).

Therefore, the implementation of the subroutine Update can be given in the
following simple form.

Algorithm 32：Subroutine Update(j, s, D, A)
Input ：j, s[], D[], A[]
Output ：Move vertex j into set S

1 s[j]← 2;

2 for i = 1, . . . , dj do
3 if s[A[j, i]] = 0 then
4 s[A[j, i]] = 1 ; /* add k = A[j, i] to S */

5 end

6 if D[A[j, i]] > D[j] + c(j, A[j, i]) then
7 D[A[j, i]]← D[j] + c(j, A[j, i]);

8 end

9 end

In this implementation, the subroutine Update runs in O(d(j)) time, where
d(j) is the degree, or the number, of neighbors, of the vertex j. It is difficult to
essentially improve this part. However, we do not need to process the neighbors
already in S; it can run a bit faster if we can skip them.

4.2. Analysis of Dijkstra’s algorithm. As described previously, the imple-
mentation in this book is not so efficient that there is no room for improvement.
However, it is a nice exercise for readers to evaluate the time complexity of the
simple implementation above.

In the main part of Dijkstra’s algorithm, the initialization takes O(n) time,
and the while statement is also repeated in O(n) time. In this while, the function
FindMinimum performs in O(n + m) time, and the subroutine Update runs in
O(d(j)) time. Therefore, n repeats of the function FindMinimum dominate the
running time, and hence, the total running time is estimated as O(n(n + m)) time.
In a general graph, the number of edges can be bounded above by n(n − 1)/2, or
O(n2). Thus, Dijkstra’s algorithm in this implementation runs in O(n3) time. If
we adopt a more sophisticated data structure with fine analysis, it is known that
Dijkstra’s algorithm can be improved to O(n2) time.
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Current route finding algorithm is...� �
On an edge-weighted graph, the shortest path problem with minimum cost is
simple but deep. Although the basic idea of Dijkstra’s algorithm is not very
difficult, we now feel keenly that we need some nontrivial tricks that can be
implemented so that it runs efficiently. Some readers may feel that such a
graph search problem is certainly interesting, but is a so-called toy problem,
that is, it is artificial and has few applications. However, this is not the case.
You are daily served by such algorithms for solving graph search problems. For
example, consider your car navigation system, or your cellular phone. In such
a device, there exists a program for solving graph search problems. When you
go to an unfamiliar place by car or by public transportation, by any route, you
have to solve the graph search problem. This is, essentially, the shortest path
problem with minimum cost. Some decades ago, in such a case, you would have
tackled this problem by yourself using maps and time tables. Moreover, this
would not necessarily have given you the best solution. However, nowadays,
anybody can solve this shortest path problem easily by using an electric device.
We owe the development of efficient algorithms for this problem a great debt
of gratitude.
Since it is in demand from the viewpoint of applications, research on graph
search algorithms is still active. There are international competitions for solv-
ing these problems in the shortest time. The up-to-date algorithms can solve
the graph search problems even if a graph has tens of thousands of vertices.
For example, for the map of United States, they can find a shortest path be-
tween any two towns in some milliseconds, which is amazing. As compared
to the simple(!) Dijkstra’s algorithm, these algorithms use very many detailed
techniques to make them faster. For example, on some specific map, they use
knowledge such as “It is not likely that the shortest path passes a point that
is farthest from the start point,” “Main roads (such as highways) are likely to
be used,” “Beforehand, compute the shortest paths among some major land-
marks,” and so on.� �
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