
Introduction to
Algorithms and Data Structures

2. Foundation of Algorithms (2)
Simple Basic Algorithms

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/
1

mailto:uehara@jaist.ac.jp
http://www.jaist.ac.jp/%7Euehara

Algorithm?

• Algorithm: abstract description of how to solve a
problem (by computer)
– It returns correct answer for any input
– It halts for any input
– Description is not ambiguity

• (operations are well defined)

• Program: description of algorithm by some
computer language
– (Sometimes it never halt)

2

Design of Good Algorithms

• There are some design method
• Estimate time complexity (running time) and

space complexity (quantity of memory)
• Verification and Proof of Correctness of

Algorithm

• Bad algorithm
– Instant idea: No design method
– Just made it: No analysis of correctness and/or

complexity

3

Goal of this morning

• Understand the importance of designing
efficient algorithms

• Familiarize with big-O notation,
e.g., 5𝑛𝑛2 + 3𝑛𝑛 + 6 = 𝑂𝑂(𝑛𝑛2)

• Learn how to analyze the complexity of an
algorithm

4

SOME FUNCTIONS AND
ALGORITHMS

Examples:

5

The Collatz function

• collatz(5) calls collatz(16), which calls
collatz(8), … , collatz(1), which returns.

6

collatz(unsigned int n) {
print(n); // output n
if (n == 1) return;
if (n%2==0) collatz(n/2);
else collatz(3n+1);

}

C.f.: Collatz conjectured that for any positive integer
𝑘𝑘, collatz(𝑘𝑘) converges to 1, which is still open!

The factorial function

• Let’s compute the factorial function:
𝑛𝑛! = 1 × 2 × ⋯× (𝑛𝑛 − 1) × 𝑛𝑛

Equivalently,

𝑛𝑛! = � 1
𝑛𝑛 − 1 ! × 𝑛𝑛

7

If 𝑛𝑛 = 0
Otherwise

int fact(unsigned int n) {
if (n == 0) return 1;
return fact(n-1)*n;

}

The Fibonacci sequence

• Let’s compute the Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Equivalently,

𝐹𝐹𝑛𝑛 = �
0
1

𝐹𝐹𝑛𝑛−1 + 𝐹𝐹𝑛𝑛−2

8

If 𝑛𝑛 = 0

Otherwise
If 𝑛𝑛 = 1

Check the Wikipedia
for (interesting) Fibonacci
sequence…

The Fibonacci sequence

• Let’s compute the Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Equivalently,

𝐹𝐹𝑛𝑛 = �
0
1

𝐹𝐹𝑛𝑛−1 + 𝐹𝐹𝑛𝑛−2

If 𝑛𝑛 = 0

Otherwise
If 𝑛𝑛 = 1

int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1)+fib(n-2);

}

The Fibonacci sequence: computation time

Problem: on my computer, fib(50) takes more
than a minute,,, and fib(100) would take more
than 30,000 years on today’s fastest computer!!
However, a human can easily compute 𝐹𝐹100 by
hand in a few hours! Weren’t computers
supposed to be faster than people??

int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1)+fib(n-2);

}

The Fibonacci sequence: computation time
What happens?

We used a very inefficient algorithm! Each call
to fib calls fib again, twice or more. That is, the
algorithm re-computes the same numbers over
and over!!

The Fibonacci sequence: a better version
What would a human do instead?
We start from the bottom: write down 𝐹𝐹0, 𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3, and
compute the next Fibonacci number by looking up the
last two.
This way, each Fibonacci number is computed just once!

int fib2(unsigned int n) {
int f[n+1];
f[0] = 0;
f[1] = 1;
for (int i=2; i<=n; i++)

f[i]=f[i-1]+f[i-2];
return f(n);

}

The Fibonacci sequence: a better version
What would a human do instead?

int fib2(unsigned int n) {
int f[n+1];
f[0] = 0;
f[1] = 1;
for (int i=2; i<=n; i++)

f[i]=f[i-1]+f[i-2];
return f(n);

}

Problem: on my computer, fib2(1000000) gives
“stack overflow” error! We are using too much
memory to store the Fibonacci numbers.

The Fibonacci sequence: an even better version

What can we do to use less memory?
We only ever need the last two Fibonacci numbers to
compute the next one, so we do not have to store them
all!

int fib3(unsigned int n) {
int last1 = 0;
int last2 = 1;
for (int i=0; i<n; i++){

int next = last1 + last2;
last1 = last2;
last2 = next;

}
return last1;

}

BIG-O NOTATION
Tool for estimation of algorithms:

15

Big-O notation
Why we use big-O notation?
• When we reason about the efficiency of an algorithm,

we want to abstract from the actual implementation
details, programming language, and machine model
on which it is executed.

• All these elements introduce speedups or slowdowns
by constant factors only (e.g., accessing a C++ array
on my PC is 2.5 times faster than accessing a Java
array on your smartphone).

• For the essence of an algorithm, these factors do not
matter.

Big-O notation
Why we use big-O notation?
• So, we will “identify” all functions that differs only by

additive and multiplicative constants.
– For example, 5𝑛𝑛 + 3 is “the same” as 100𝑛𝑛 + 800
– We say that both these functions are 𝑂𝑂 𝑛𝑛 , because they

are “the same” as 𝑛𝑛 up to constant factors.

Representative functions in big-O notation
• Constant: 𝑂𝑂(1)
• Logarithmic: 𝑂𝑂(log𝑛𝑛)
• Linear: 𝑂𝑂(𝑛𝑛)
• Quasi-linear: 𝑂𝑂(𝑛𝑛 log𝑛𝑛)
• Quadratic: 𝑂𝑂(𝑛𝑛2)
• Cubic: 𝑂𝑂(𝑛𝑛3)
• Polynomial: 𝑂𝑂(𝑛𝑛𝑐𝑐)
• Exponential: 𝑂𝑂(𝑐𝑐𝑛𝑛)
An algorithm with a quasi-linear running time is practical.
An algorithm with a polynomial time is tractable.
Otherwise, it is intractable.

(E.g., 10)
(E.g., 3 log𝑛𝑛 + 23)

(E.g., 35𝑛𝑛80 +800𝑛𝑛20 +23𝑛𝑛15)
(E.g., 2𝑛𝑛+80)

Small exercise:
Show that for any integers a and b,

log𝑎𝑎𝑛𝑛 = O(log𝑏𝑏𝑛𝑛)

Cf. Definition of Big-O notation
In this class, I will not give the formal definition:

• If you are interested in, please check textbook!

Definition: For functions f and g on natural numbers, if
ヨc,n0 >0, ∀n≧n0 [f(n)≦ c g(n)]

then we say f(n) is in the order of g(n) and denote it by f(n) = O(g(n)).

Ex. 1: The followings hold for any functions f, g and h on natural numbers:
1. ∀n[f(n) ≦ g(n)]  f(n) = O(g(n))
2. [f(n) = O(g) and g(n) = O(h(n))]  f(n) = O(h(n))

Remark: the constants c and n0 must be determined independently of n.

Ex. 2: Prove the following:
1. 5n3+4n2+n=O(n3)
2. 5n3+4n2+n=O(n4)
3. 5n3+4n2+n≠O(n2)

[Comment] Some people write as f(n)∈O(g(n))

ANALYSIS OF ALGORITHMS
Computation of Fibonacci sequence:

20

The Fibonacci sequence: Running time of fib

We use a “simplistic” model for estimation:
Each “elementary instruction” such as an assignment, an
arithmetic operation, a Boolean test, etc. takes unit time.

int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1)+fib(n-2);

}

Let 𝑇𝑇 𝑛𝑛 be the running time of fib(n):

𝑇𝑇(𝑛𝑛) = �
1
2

𝑇𝑇 𝑛𝑛 − 1 + 𝑇𝑇 𝑛𝑛 − 2 + 5

If 𝑛𝑛 = 0

Otherwise
If 𝑛𝑛 = 1

The Fibonacci sequence: Running time of fib

We use a “simplistic” model for estimation:
Each “elementary instruction” such as an assignment, an
arithmetic operation, a Boolean test, etc. takes unit time.
Let 𝑇𝑇 𝑛𝑛 be the running time of fib(n):

It is easy to show that 𝑇𝑇 𝑛𝑛 > 𝐹𝐹𝑛𝑛.
It is (well) know that 𝐹𝐹𝑛𝑛 = O φ𝑛𝑛 , where φ is “the golden
ratio” φ =(1+√5)/2≒1.61803, so the running time of fib(n)
is exponential!

𝑇𝑇(𝑛𝑛) = �
1
2

𝑇𝑇 𝑛𝑛 − 1 + 𝑇𝑇 𝑛𝑛 − 2 + 5

If 𝑛𝑛 = 0

Otherwise
If 𝑛𝑛 = 1

The Fibonacci sequence: Running time of fib2

• The total running time 𝑇𝑇 𝑛𝑛 is therefore 𝑇𝑇 𝑛𝑛 = 6 𝑛𝑛 − 1 + 3 = 𝑂𝑂 𝑛𝑛 .

int fib2(unsigned int n) {
int f[n+1];
f[0] = 0;
f[1] = 1;
for (int i=2; i<=n; i++)
f[i]=f[i-1]+f[i-2];

return f(n);
}

• We have 3 initial operations, plus a loop that is executed 𝑛𝑛 − 1 times, and
each time it performs 6 elementary instructions: test for 𝑖𝑖 ≤ 𝑛𝑛, 𝑖𝑖 + +, 𝑖𝑖 −
1, 𝑖𝑖 − 2, addition, assignment.

• We use an array of size 𝑛𝑛 + 1 plus the variable i, hence the total space is
𝑛𝑛 + 2 = 𝑂𝑂 𝑛𝑛 .

Time and space are both linear.

The Fibonacci sequence: Running time of fib3

• The total running time 𝑇𝑇 𝑛𝑛 is therefore 𝑇𝑇 𝑛𝑛 = 6𝑛𝑛 + 2 = 𝑂𝑂 𝑛𝑛 .

• We have 2 initial operations, plus a loop that is executed 𝑛𝑛 times, and each
time it performs 6 operations.

• We only use 4 variables: 𝑂𝑂 1 space.

This fib3 runs in linear time and constant space.

int fib3(unsigned int n) {
int last1 = 0;
int last2 = 1;
for (int i=0; i<n; i++){
int next = last1 + last2;
last1 = last2;
last2 = next;

}
return last1;

}

Is exponential time really bad?
Moore’s law:
The speed of computers doubles every 18 months.
• Since the speed of computers increases exponentially, maybe in

a couple of years we will be able to run fib(n) in a reasonable
time?

• Unfortunately, not!
• Suppose today we can execute fib(100) in a reasonable time.
• In 12 months, computers will be about 1.6 times faster. But

fib(101) takes about 1.6 times more than fib(100)!
• So, next year we will only be able to execute fib(101).
• In 10 years, we will only be able to execute fib(110) …
• Only one Fibonacci number per year: this is the “curse” of

exponential running times!!

Representative functions in big-O notation
• Constant: 𝑂𝑂(1)
• Logarithmic: 𝑂𝑂(log𝑛𝑛)
• Linear: 𝑂𝑂(𝑛𝑛)
• Quasi-linear: 𝑂𝑂(𝑛𝑛 log𝑛𝑛)
• Quadratic: 𝑂𝑂(𝑛𝑛2)
• Cubic: 𝑂𝑂(𝑛𝑛3)
• Polynomial: 𝑂𝑂(𝑛𝑛𝑐𝑐)
• Exponential: 𝑂𝑂(𝑐𝑐𝑛𝑛)
An algorithm with a quasi-linear running time is practical.
An algorithm with a polynomial time is tractable.
Otherwise, it is intractable.

(E.g., 10)
(E.g., 3 log𝑛𝑛 + 23)

(E.g., 35𝑛𝑛80 +800𝑛𝑛20 +23𝑛𝑛15)
(E.g., 2𝑛𝑛+80)

	Introduction to �Algorithms and Data Structures��2. Foundation of Algorithms (2)�Simple Basic Algorithms
	Algorithm?
	Design of Good Algorithms
	Goal of this morning
	Some Functions and Algorithms
	The Collatz function
	The factorial function
	The Fibonacci sequence
	The Fibonacci sequence
	The Fibonacci sequence: computation time
	The Fibonacci sequence: computation time
	The Fibonacci sequence: a better version
	The Fibonacci sequence: a better version
	The Fibonacci sequence: an even better version
	Big-O notation
	Big-O notation
	Big-O notation
	Representative functions in big-O notation
	Cf. Definition of Big-O notation
	Analysis of algorithms
	The Fibonacci sequence: Running time of fib
	The Fibonacci sequence: Running time of fib
	The Fibonacci sequence: Running time of fib2
	The Fibonacci sequence: Running time of fib3
	Is exponential time really bad?
	Representative functions in big-O notation

