Introduction to
Algorithms and Data Structures

Searching (1):
Sequential search and its analysis

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

mailto:uehara@jaist.ac.jp

SEARCH PROBLEM

Search Problem

* Problem: Sis a given set of data. For any given
data x, determine efficiently if S contains x or
not.

* Efficiency: Estimate the time complexity by n =
|S|, the size of the set S

— In this problem, “checking every data in §” is
enough, and this gives us an upper bound O(n) in
the worst case.

— Can we do better?
— How about dictionary?

How to tackle the problem

e Consider data structure and how to store data
— Data are in an array in any ordering

— Data are in an array in increasing order

* Search algorithm: The way of searching

— Sequential search } We introduce these methods
— m-block method to explain our naive idea.

— Double m-block method
— Binary search

* Analysis of efficiency

Data structure 1
Data are stored in arbitrary ordering

 Each element in the set S is stored in an array
s from s[0] to s[n-1] in any arbitrary ordering.

s[]=|37|12|25| 9 | 87|33 |65 3 |29

Sequential search

* |nput: any natural number x

* Qutput:
— If there is i such that s[i] == x, output i
— Otherwise, output -1 (for simplicity)
for (i=0; i<n; ++1)

if(x==s[i]) return i;
return -1;
In the worst case, we need n comparisons.

Thus, the running time 1s proportional to 7.
— O(n) time algorithm

Example: Real code of seq. search

public class 1111 03 p7{
public static void Main(){

int[] data
int len =

int target
int result
if (result

System.

1} else {

System.

}
}

= new int[]{37,12,25,9,87,33,65,3,29};

data.Length;

= 87;
= find(target,len,data);
== -1) {

Console.WriteLine(target+" not found");

Console.WriteLine(target+" is at index "+result);

static int find(int x, int n, int[] s) {
for (int i=0; i<n; i++) {
System.Console.Write(i+" ");

if (x==

}

return -1;

s[i]) return i;

Precise time complexity of
sequential search

* At most 3n + 2 steps

l Initialization of i takes 1 operation

For the number of loops = n,
comparison X2 (==, <)
increment X1 (++)

for (i=0; i<n; ++1i)
if(x==s[1i]) return 1i;
return -1;

T Return takes 1 operation

[bit maniac]

Programming tips 1:
simplify by using “sentine

Before searching, push x itself at the end of the array;
Then you definitely have x==s[i] for some 0<=i<=n
So you do not need the check i<n any more.

O 1 2 n_1 “« X . ”
Sentinel
array s[] Note that we need

- an array of size n+1

searching .
s[n] = x;
i= 0; Simple loop!
while(x != s[i]) } =>» 2 operations

i = i+1;

if(i < n) return ij; At most 2n+4 (<3n+2) operations
else return -1; =0(n) ;

III

Analysis of the number of comparisons

Consider best/worst/average cases §[n]@= %
i= 0;

* The best case: 1 while(x!=s[i])

— when s[0] == x 1 = 1+1;
 The worst case: n (1 < n).

return 1;
— when x is not in s[0]...s[n-1] alse
=i n+2 return -1;

1
e The averagecase: 2_ - =5
i=1

— The expected value of # of comparisons

— The i-th element is compared with probability 1/n

— The number of comparisons when x is equal to
the i-th element s i.

»:average is close to n when we often have the case that x 1s not in data
% It depends on the situation that which case is important

What happens
if we use
“nice” data structure?

Data structure 2
Data in the array in increasing order

We don’t consider how can we do now

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

* Q: Any improvement in sequential algorithm?

Idea
s[n]=x; We can stop when s[i] is
1= 0; greater than x
while(x!=s[i]) x!=s[i] = x>s[i]
1 = 1+1;

if(i < n) return i;
else return -1;

Data structure 2
Data in the array in increasing order

We don’t consider how can we do now

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

* Q: Any improvement in sequential algorithm?

Idea

s[n]=x; We can stop when s[i] is
1 = ©; itdoesnothappen overx! greater than x

wh11e(s[1]<x) x!=s[i] = x>s[i]
1 = 1+1;

if(i < n) return i;

else return -1;

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

* Q: Any improvement in sequential algorithm?

s[n]=x;

i = 0;

while(s[i]<x) ~====g

,1 K 2iodhs , It may stop even if i<n
if(i < n) return i; i<n > s[i]==x

else ISLLIRURREI o if x=30, we have i<n (5<9)

BGOSR |t it should return (—1)

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

* Q: Any improvement in sequential algorithm?

s[n]=x;

1= 0;

while(s[i]<x) —

i = 1+41; |
if(s[i]==x) return i; AN if i<n
else return -1; i<n D s[i]==x

Much intuitive condition! .

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

Look!

When x is not in s[],
MOV i ctyurns n
s[n]=x =» s[n]=x+1

ential algorithm?

s[n]=x; [

i = 0; N

while(s[i]<x) ==l
i = 1+1;

if(s[1]==x) return 1i;
else return -1;

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |[xeal

When x is not in
OWVS\ 11 it returns n
s[n]=x = s[n]=x+1

pquential algorithm?

s[n]=x+1; We can stop when s[i] is
1= 0; greater than x
while(s[i]<x) x!=s[i] = x>s[i]

1 = 1+1;

if(s[i]==x) return ij; It may stop even
else return -1; if i<n

i<n =» s[i]==x

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |jsdl
— Exit from loop when: s[i]=x

— Check after loop: s[i]==
— Sentinel: greater than x, e.g., x+1

s[n]=x+1;
i = 0;
while(s[1i]<x)
1 = 1+1;
if(s[i]==x) return i;
the worst case
else return -1;

Q: When the average 1s better? i«

Example: Real code of seq. search in increasing order

public class 1111 03 p18{
public static void Main(){
int[] data = new int[]{3,9,12,25,29,33,37,65,87,-1};
int len = data.Length-1;

int target = 17;
int result = find(target,len,data);

if (result == -1) {
System.Console.WritelLine(target+" not found");
} else {

System.Console.WritelLine(target+" is at index "+result);

}
}

static int find(int x, int n, int[] s) {

s[n] = x+1;

int i=0;

while (s[i]<x) {
System.Console.Write(i+" ");
i++;

}

if (x==s[i]) return i;

return -1;

[bit maniac)

Minor improvements of number of
comparisons in sequential search

(Tips 1)

In the array, the minimum data is the first, and the maximum
data is the last. Thus, depending on x and them,

we can change the direction of search.

=>» We still need n-1 comparisons in the worst case

(Tips 2)
First, compare x with the medium data s[n/2]. If x is larger,
search the right half, and search the left half otherwise.

=>» At most n/2 comparisons. Much smaller.
=> It is still O(n), but,,,

Drastic improvement from O(n)!!

	Introduction to �Algorithms and Data Structures��Searching (1): �Sequential search and its analysis
	Search Problem
	Search Problem
	How to tackle the problem
	Data structure 1�Data are stored in arbitrary ordering
	Sequential search
	Example: Real code of seq. search
	Precise time complexity of sequential search
	Programming tips 1: �simplify by using “sentinel”
	Analysis of the number of comparisons
	What happens�if we use �“nice” data structure?�
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Example: Real code of seq. search in increasing order
	Minor improvements of number of comparisons in sequential search

