
Introduction to
Algorithms and Data Structures

Searching (1):
Sequential search and its analysis

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

mailto:uehara@jaist.ac.jp

SEARCH PROBLEM
Main topic:

2

Search Problem
• Problem: S is a given set of data. For any given

data x, determine efficiently if S contains x or
not.

• Efficiency: Estimate the time complexity by n =
|S|, the size of the set S
– In this problem, “checking every data in S” is

enough, and this gives us an upper bound O(n) in
the worst case.

– Can we do better?
– How about dictionary?

3

How to tackle the problem

• Consider data structure and how to store data
– Data are in an array in any ordering
– Data are in an array in increasing order

• Search algorithm: The way of searching
– Sequential search
– m-block method
– Double m-block method
– Binary search

• Analysis of efficiency
4

We introduce these methods
to explain our naïve idea.

Data structure 1
Data are stored in arbitrary ordering

• Each element in the set S is stored in an array
s from s[0] to s[n-1] in any arbitrary ordering.

5

37 12 25 9 87 33 65 3 29s[]=

Sequential search

• Input: any natural number x
• Output:

– If there is i such that s[i] == x, output i
– Otherwise, output -1 (for simplicity)

6

In the worst case, we need n comparisons.
Thus, the running time is proportional to n.
→ O(n) time algorithm

for (i=0; i<n; ++i)
if(x==s[i]) return i;

return -1;

Example: Real code of seq. search

7

public class i111_03_p7{
public static void Main(){

int[] data = new int[]{37,12,25,9,87,33,65,3,29};
int len = data.Length;

int target = 87;
int result = find(target,len,data);
if (result == -1) {

System.Console.WriteLine(target+" not found");
} else {

System.Console.WriteLine(target+" is at index "+result);
}

}

static int find(int x, int n, int[] s) {
for (int i=0; i<n; i++) {

System.Console.Write(i+" ");
if (x==s[i]) return i;

}
return -1;

}
}

Precise time complexity of
sequential search

• At most 3n + 2 steps

8

for (i=0; i<n; ++i)
if(x==s[i]) return i;

return -1;

Initialization of i takes 1 operation

For the number of loops ≦ n,
comparison ×2 (==, <)
increment ×1 （++）

Return takes 1 operation

Before searching, push x itself at the end of the array;
Then you definitely have x==s[i] for some 0<=i<=n
So you do not need the check i<n any more.

array s[] =

0 1 2 n-1 n x
“Sentinel”

searching

Programming tips 1:
simplify by using “sentinel”

s[n] = x;
i = 0;
while(x != s[i])
i = i+1;
if(i < n) return i;
else return -1;

Put the sentinel

Simple loop!
 2 operations

At most 2n+4 (<3n+2) operations
=𝑂𝑂 𝑛𝑛 9

【bit maniac】

Note that we need
an array of size n+1

Analysis of the number of comparisons

Consider best/worst/average cases
• The best case: 1

– when s[0] == x

• The worst case: n
– when x is not in s[0]…s[n-1]

• The average case :
– The expected value of # of comparisons
– The i-th element is compared with probability 1/n
– The number of comparisons when x is equal to

the i-th element is i.

10

s[n] = x;
i = 0;
while(x!=s[i])
i = i+1;

if(i < n)
return i;

else
return -1;

※average is close to n when we often have the case that x is not in data
※It depends on the situation that which case is important

What happens
if we use

“nice” data structure?

11

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(x!=s[i])
i = i+1;
if(i < n) return i;
else return -1;

12

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

We don’t consider how can we do now

x

Idea

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(i < n) return i;
else return -1;

13

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

We don’t consider how can we do now

x

Idea

It does not happen over x!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(i < n) return i;
else return -1;

14

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]
It may stop even if i<n
i<n  s[i]==x
E.g, if x=30, we have i<n (5<9)
but it should return (-1)Look!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

15

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even if i<n
i<n  s[i]==x

Much intuitive condition!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

16

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even if i<n
i<n  s[i]==x

When x is not in s[],
it returns n
s[n]=x  s[n]=x+1

Look!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x+1;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

17

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even
if i<n
i<n  s[i]==x

When x is not in
s[], it returns n
s[n]=x  s[n]=x+1

x+1

Data structure 2
Data in the array in increasing order

• s[]=
– Exit from loop when: s[i]≧x
– Check after loop: s[i]==x
– Sentinel: greater than x, e.g., x+1

3 9 12 25 29 33 37 65 87

s[n]=x+1;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

18

Q. Improve of comparison?

A. Average is better.
But the same in

the worst case

x+1

Q：When the average is better?

Example: Real code of seq. search in increasing order

19

public class i111_03_p18{
public static void Main(){

int[] data = new int[]{3,9,12,25,29,33,37,65,87,-1};
int len = data.Length-1;

int target = 17;
int result = find(target,len,data);
if (result == -1) {

System.Console.WriteLine(target+" not found");
} else {

System.Console.WriteLine(target+" is at index "+result);
}

}

static int find(int x, int n, int[] s) {
s[n] = x+1;
int i=0;
while (s[i]<x) {

System.Console.Write(i+" ");
i++;

}
if (x==s[i]) return i;
return -1;

}
}

(Tips 1)
In the array, the minimum data is the first, and the maximum
data is the last. Thus, depending on x and them,
we can change the direction of search.
We still need n-1 comparisons in the worst case

(Tips 2)
First, compare x with the medium data s[n/2]. If x is larger,
search the right half, and search the left half otherwise.
At most n/2 comparisons. Much smaller.
It is still 𝑂𝑂(𝑛𝑛), but,,,

Minor improvements of number of
comparisons in sequential search

20

【bit maniac】

Drastic improvement from O(n)!!

	Introduction to �Algorithms and Data Structures��Searching (1): �Sequential search and its analysis
	Search Problem
	Search Problem
	How to tackle the problem
	Data structure 1�Data are stored in arbitrary ordering
	Sequential search
	Example: Real code of seq. search
	Precise time complexity of sequential search
	Programming tips 1: �simplify by using “sentinel”
	Analysis of the number of comparisons
	What happens�if we use �“nice” data structure?�
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Example: Real code of seq. search in increasing order
	Minor improvements of number of comparisons in sequential search

