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Review:
We have three combinations of “data structure”, “what
to do” and “algorithm”.
“What to do”: E.g., i-th data, search, add/insert/remove.

Array: access in O(1), search in O(n)

Array in order: search in O(log n), but add/remove in
O(n)

Linked list: access in O(n), but add/remove in O(1)
Hash: easy to add and search
Binary search tree: dynamic search




Dynamic search and data structure

 Sometimes, we would like to search in

dynamic data, i.e., we add/remove data in the
data set.

 Example: Document management in
university
— New students: add to list
— Alumni: remove from list
— When you get credit: search the list

Q. Good data structure?



Naive idea: array or linked list?

e Data in order:

— Search: binary search in O(log n) time
students, and

you have 300
* Data not in order: new students!

— Search and remove: O(n) time per data
— Add: in O(1) time

— Add and remove: O(n) time per data



Better idea: binary search tree

* For every vertex v, we have the following;
— Data in v = any data in a vertex in left subtree

— Data in v = any data in a vertex in right subtree
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Better idea: binary search tree

We construct binary search tree for a given data set;
we learnt it can be updated in O(L) time, where L is the
length of the route from a leaf to the root.

When data is random: N
— Depth of the tree: O(log n) 7\ /N
— Search, add, remove: O(log n) time. 7N 7V 1< N

In the worst case:
— Depth of the tree: n
— When data is given in order,
we have the worst case.
— Search, add, remove: O(n) time...
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Today: More binary search tree (BST)

Get maximum/minimum data (< heap)
Enumerate all data in the tree (< array)
“Good” and “bad” structure?

How can we fix bad to good?



1. Max/min data in BST

* Properties of a BST
— All left descendants have smaller values
— All right descendants have larger values

e Using the properties...

— Minimum: the leftmost lowest descendant from the
root

— Maximum: the rightmost lowest descendant from the
root

* Tips: It is easy to remove the minimum/maximum
node (since it has at most one child)



1. Max/min data in BST (Example)

(consider remove them also)




[Review]

How about heap?

1. Assign 1 to the root.
‘\ 2. For a node of number i, assign
}\ 2 X i to the left child and assign

2 X i+1 to the right child.
‘ ®s ® 7 3. No nodes assigned by the

\‘ 9 number greater than n.
4. For each edge, parent stores
data smaller than one in child.

We can use an array, instead of linked list!
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It 1s easy to obtain the minimum one (at root)
However, maximum one 1s not easy in the tree/array




Today: More binary search tree (BST)

2. Enumerate all data in the tree (& array)



We have three ways of enumeration
(general traverse ways of a binary tree)

 Preorder:
Data in the current node = left subtree -
right subtree

* Inorder:
left subtree = Data in the current node =2
right subtree

* Postorder:
left subtree =2 right subtree = Data in the
current node

It 1s easy to enumerate all data in array or linked list



How to traverse binary tree: preorder
Data in node =2 left subtree =2 right subtree
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preorder(Node n) { H B E B e >j<-Depth

}

if (n==null) return;
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visit(n); preorder(n.lson); preorder(n.rson); i
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How to traverse binary tree: inorder

Left subtree = data in node = right subtr eéé\
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inorder(Node n) { H B E B 37
if (n==null) return; 42
inorder(n.lson); visit(n); inorder(n.rson);
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How to traverse binary tree: postorder
Left subtree = right subtree = data in node
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postorder(Node n) { . i . e
if (n==null) return;
postorder(n.lson); postorder(n.rson); visit(n);
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public class I111 08 p22{
public static void Main(){

Node n3 = new Node (3, null, null); Example Of COde
Node n9 = new Node (9, null, null);
Node n7 new Node (7, n3, n9);
Node nl17 new Node (17, null, null);
Node n15 new Node (15, null, nl17);
Node n20 = new Node (20, nl5, null);
Node nl12 new Node (12, n7, n20);
Node n32 new Node (32, null, null);
Node n37 new Node (37, null, null);
Node n35 new Node (35, n32, n37);
Node n42 new Node (42, n35, null);

Node n29 = new Node (29, null, n42); Easy to modlfy to pre, post
Node n25 new Node (25, nl2, n29);

inorder(n25);

}

static void inorder(Node n) {
if (n==null) return;
inorder(n.1lson); public class Node {
visit(n); OUtpUt public int data;
inorder(n.rson); public Node lson;
} public Node rson;
public Node (int i, Node 1ls, Node rs) {
data = 1i;
lson = 1s;
rson = rs;

static void visit(Node n) {
System.Console.Write(n.data+" ");

}




Small exercise

Make a small binary search tree (around 10 nodes)
Find the maximum and minimum data
Remove the root node

Enumerate data in preorder, inorder, and
postorder



Today: More binary search tree (BST)

3. “Good” and “bad” structure?



Efficiency of BST

* Best case: O(log n) 7
. . 7N
— Each of n data is kept in BST 5 13
of depth log,n 4 05 1/1 \17

Z\ /N I'\ '\

* Worst case: O(n)

— If we put in increasing order=> %<

we have depth n 23
/

5\
 “Random order” is also 1
interesting topic, but we 3
make it of depth O(log n) in pa=y
any case.
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Today: More binary search tree (BST)

4. How can we fix bad to good?



Nice idea:
(Self-)Balanced Binary Search Tree

* There are some algorithms that maintain to take
balance of tree in depth O(logn).

— e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)

Georgy M. Adelson-Velsky
(1922-2014)

Evgenii M. Landis )
(1921-1997)
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AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]

* Property (or assertion): at each vertex, the
depth of left subtree and right subtree differs

at most 1.

* Example: E
T e

e LN
/N N\ /\@
/1 "\ i

22



AVL tree: Insertion of data

Find a leaf v for a new data x

We have nothing to do
up to here

Store data x into v (v is not a leaf any more)

Check the change of balance by insertion of x

From v to the root, check the balance at each
vertex, and rebalance (rotation) if necessary.
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What happens if you
insert x=47? How about
x=10, x=20, x=237



AVL tree: Insertion of data

Insert x=4
before after
18 18
N N
12 21 12 21
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Balance: OK



AVL tree: Insertion of data

Insert x=10
before after
18 18
VAN VAN
12 21 12 21
/N /) u? \ [\
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> We also have unbalanced at 12 and 18 with
1:3 and 2:4, resp, but we first handle the deepest point @;2@‘[@ reex 5



AVL tree: Insertion of data

Insert x=20
before after
18 18
RN SN
12 21 12 21

/ N\ /) /\ |\
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Balance: OK



AVL tree: Insertion of data

Insert x=23
before after
18 18
N SN
12 21 12 X 21
/N ) /N
5\ 14 125\ /5 14 /25\
/ 8 l \ \8 I l 23
/ 7\ [\ [\

0;2@veriex-21



Today: More binary search tree (BST)

4. How can we fix bad to good?



AVL tree: Rebalance by rotations

* If you insert/remove data, the BST can get
unbalanced.

 “Rotate” tree vertices to make the difference
up to 1:
— Rotation LL
— Rotation RR
— Double rotation LR
— Double rotation RL



Rebalance of AVL-tree by rotation:

Rotation LL
 Lift up left subtree ( ) if too deep

we have to transplant right subtree (blue)

q/p;,k\

pd [\
\\ Right
child of g / \p
/\ T
Now we have :
= balanced \\ \/\ \//\’\ |

- not break balance ) —
|
+ condition of BST Left child of p



Okay, let’s
consider
concrete example!

Now we have

= balanced

= not break balance
= condition of BST

Left child of p

31



Rebalance of AVL-tree by rotation:

Rotation RR (just mirror image of LL)
e Lift up right subtree (green) if too deep

we have to transplant left sybtree (blue)
/*p

/\ —— T
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P Q Childofp S

q L — \\
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Child of q



AVL tree: Rebalance by rotation:
Double rotation LR

* When right subtree of left subtree becomes

too deep, lift up the left-right subtree.
q ;'3;&;

S —
N /\ .
R S
- \ // \\
% Condition 1s satisfied? et

> Why rotation LL does not work?



AVL tree: Rebalance by rotation:
Double rotation LR

* When right subtree of left subtree becomes
too deep, lift up the left-right subtree.

r
NP
Children of r > \ / \\
7 14) (19

> Condition 18 satisfied?
> Why rotation LL does not work?




Children of r LG 5

13

17

11

14 19

% Condition 1s satisfied? @

> Why rotation LL does not work? Children of r

35



AVL tree: Rebalance by rotation:
DOUble rOtation RL (just mirror image of LR)

 When left subtree of right subtree becomes

too deep, lift up the right-left subtree.
/& q

/\ o =
r AR [\
p—~a & 7 RS
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/\ / — |




AVL tree: Example

* |Insertion of 8

Double
rotation LR 5
N
3 8
VN

7 9




AVL tree: Example

* |Insertion of 6

Double
5 rotation RL 7
—_ N~

3 3 > 8
SN /" \ .
7 9 3 6

7
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AVL tree: Example

* |nsertion of 4 (balance is okay)
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AVL tree: Example

e Deletion of 6

Double
7 A rotation LR 7
5 8 ::; P 'l ‘
3 6 \ 9 / \ \
\ 3 5 9

4
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AVL tree: Example

* |nsertion of 6 (balance is okay)
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AVL tree: Example

e Deletion of 8

3/\/\5

\/\

| 9 3
6

Double
7 rotation LR
—
4 9 j> 4



Time complexity of balanced binary
search tree
* Search: O(logn) time
* Insertion/Deletion: O(logn) time

— O(logn) rotations

— Each rotation takes constant time

* |n total, on a balanced binary search tree,
every operation can be done in O(logn) time.

(n is the number of data in the tree)
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