Introduction to
Algorithms and Data Structures

7. Data structure (2)
Binary Search Tree and its balancing

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/

mailto:uehara@jaist.ac.jp
http://www.jaist.ac.jp/%7Euehara

Review:
We have three combinations of “data structure”, “what
to do” and “algorithm”.
“What to do”: E.g., i-th data, search, add/insert/remove.

Array: access in O(1), search in O(n)

Array in order: search in O(log n), but add/remove in
O(n)

Linked list: access in O(n), but add/remove in O(1)
Hash: easy to add and search
Binary search tree: dynamic search

Dynamic search and data structure

 Sometimes, we would like to search in

dynamic data, i.e., we add/remove data in the
data set.

 Example: Document management in
university
— New students: add to list
— Alumni: remove from list
— When you get credit: search the list

Q. Good data structure?

Naive idea: array or linked list?

e Data in order:

— Search: binary search in O(log n) time
students, and

you have 300
* Data not in order: new students!

— Search and remove: O(n) time per data
— Add: in O(1) time

— Add and remove: O(n) time per data

Better idea: binary search tree

* For every vertex v, we have the following;
— Data in v = any data in a vertex in left subtree

— Data in v = any data in a vertex in right subtree
55) root

12 29

35

17 32 37

Better idea: binary search tree

We construct binary search tree for a given data set;
we learnt it can be updated in O(L) time, where L is the
length of the route from a leaf to the root.

When data is random: N
— Depth of the tree: O(log n) 7\ /N
— Search, add, remove: O(log n) time. 7N 7V 1< N

In the worst case:
— Depth of the tree: n
— When data is given in order,
we have the worst case.
— Search, add, remove: O(n) time...

/N
VAN
/

N
SN

W

Today: More binary search tree (BST)

Get maximum/minimum data (< heap)
Enumerate all data in the tree (< array)
“Good” and “bad” structure?

How can we fix bad to good?

1. Max/min data in BST

* Properties of a BST
— All left descendants have smaller values
— All right descendants have larger values

e Using the properties...

— Minimum: the leftmost lowest descendant from the
root

— Maximum: the rightmost lowest descendant from the
root

* Tips: It is easy to remove the minimum/maximum
node (since it has at most one child)

1. Max/min data in BST (Example)

(consider remove them also)

[Review]

How about heap?

1. Assign 1 to the root.
‘\ 2. For a node of number i, assign
}\ 2 X i to the left child and assign

2 X i+1 to the right child.
‘ ®s ® 7 3. No nodes assigned by the

\‘ 9 number greater than n.
4. For each edge, parent stores
data smaller than one in child.

We can use an array, instead of linked list!

ol a1 Lislial izl 21l 22
~

It 1s easy to obtain the minimum one (at root)
However, maximum one 1s not easy in the tree/array

Today: More binary search tree (BST)

2. Enumerate all data in the tree (& array)

We have three ways of enumeration
(general traverse ways of a binary tree)

 Preorder:
Data in the current node = left subtree -
right subtree

* Inorder:
left subtree = Data in the current node =2
right subtree

* Postorder:
left subtree =2 right subtree = Data in the
current node

It 1s easy to enumerate all data in array or linked list

How to traverse binary tree: preorder
Data in node =2 left subtree =2 right subtree

-

@)

g

12 29

preorder(Node n) { H B E B e >j<-Depth

}

if (n==null) return;

first
visit(n); preorder(n.lson); preorder(n.rson); i

manner =

25
12

20
15
17
29
42
35
32
37

How to traverse binary tree: inorder

Left subtree = data in node = right subtr eéé\

¥ g0t

) 7

e 9

12 29 12

15

7, 2, @ %

20

S zs
29

a s

35

inorder(Node n) { H B E B 37
if (n==null) return; 42
inorder(n.lson); visit(n); inorder(n.rson);

14

How to traverse binary tree: postorder
Left subtree = right subtree = data in node

-

@)

v’

12 29

postorder(Node n) { . i . e
if (n==null) return;
postorder(n.lson); postorder(n.rson); visit(n);

¥

17
15
20
12
32
37
35
42
29
25

15

public class I111 08 p22{
public static void Main(){

Node n3 = new Node (3, null, null); Example Of COde
Node n9 = new Node (9, null, null);
Node n7 new Node (7, n3, n9);
Node nl17 new Node (17, null, null);
Node n15 new Node (15, null, nl17);
Node n20 = new Node (20, nl5, null);
Node nl12 new Node (12, n7, n20);
Node n32 new Node (32, null, null);
Node n37 new Node (37, null, null);
Node n35 new Node (35, n32, n37);
Node n42 new Node (42, n35, null);

Node n29 = new Node (29, null, n42); Easy to modlfy to pre, post
Node n25 new Node (25, nl2, n29);

inorder(n25);

}

static void inorder(Node n) {
if (n==null) return;
inorder(n.1lson); public class Node {
visit(n); OUtpUt public int data;
inorder(n.rson); public Node lson;
} public Node rson;
public Node (int i, Node 1ls, Node rs) {
data = 1i;
lson = 1s;
rson = rs;

static void visit(Node n) {
System.Console.Write(n.data+" ");

}

Small exercise

Make a small binary search tree (around 10 nodes)
Find the maximum and minimum data
Remove the root node

Enumerate data in preorder, inorder, and
postorder

Today: More binary search tree (BST)

3. “Good” and “bad” structure?

Efficiency of BST

* Best case: O(log n) 7
. . 7N
— Each of n data is kept in BST 5 13
of depth log,n 4 05 1/1 \17

Z\ /N I'\ '\

* Worst case: O(n)

— If we put in increasing order=> %<

we have depth n 23
/

5\
 “Random order” is also 1
interesting topic, but we 3
make it of depth O(log n) in pa=y
any case.

S
/

Today: More binary search tree (BST)

4. How can we fix bad to good?

Nice idea:
(Self-)Balanced Binary Search Tree

* There are some algorithms that maintain to take
balance of tree in depth O(logn).

— e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)

Georgy M. Adelson-Velsky
(1922-2014)

Evgenii M. Landis)
(1921-1997)

21

AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]

* Property (or assertion): at each vertex, the
depth of left subtree and right subtree differs

at most 1.

* Example: E
T e

e LN
/N N\ /\@
/1 "\ i

22

AVL tree: Insertion of data

Find a leaf v for a new data x

We have nothing to do
up to here

Store data x into v (v is not a leaf any more)

Check the change of balance by insertion of x

From v to the root, check the balance at each
vertex, and rebalance (rotation) if necessary.

12

" —

18

—

/

21

N

/

25

\

What happens if you
insert x=47? How about
x=10, x=20, x=237

AVL tree: Insertion of data

Insert x=4
before after
18 18
N N
12 21 12 21
/N) /N)
R S G S = R S G
{ 8 / \ 4 |8 | \
/ 7\ [\ [\

Balance: OK

AVL tree: Insertion of data

Insert x=10
before after
18 18
VAN VAN
12 21 12 21
/N /) u? \ [\
5\ 14 125\ ii 14 25
AR SR A W
/ 7\ A\
10

> We also have unbalanced at 12 and 18 with
1:3 and 2:4, resp, but we first handle the deepest point @;2@‘[@ reex 5

AVL tree: Insertion of data

Insert x=20
before after
18 18
RN SN
12 21 12 21

/ N\ /) /\ |\
5\ 14 125\ 5 14 ' 20 25\
/ 8 [\ / \8 1]\ !

/ 7\ [\

Balance: OK

AVL tree: Insertion of data

Insert x=23
before after
18 18
N SN
12 21 12 X 21
/N) /N
5\ 14 125\ /5 14 /25\
/ 8 l \ \8 I l 23
/ 7\ [\ [\

0;2@veriex-21

Today: More binary search tree (BST)

4. How can we fix bad to good?

AVL tree: Rebalance by rotations

* If you insert/remove data, the BST can get
unbalanced.

 “Rotate” tree vertices to make the difference
up to 1:
— Rotation LL
— Rotation RR
— Double rotation LR
— Double rotation RL

Rebalance of AVL-tree by rotation:

Rotation LL
 Lift up left subtree () if too deep

we have to transplant right subtree (blue)

q/p;,k\

pd [\
\\ Right
child of g / \p
/\ T
Now we have :
= balanced \\ \/\ \//\’\ |

- not break balance) —
|
+ condition of BST Left child of p

Okay, let’s
consider
concrete example!

Now we have

= balanced

= not break balance
= condition of BST

Left child of p

31

Rebalance of AVL-tree by rotation:

Rotation RR (just mirror image of LL)
e Lift up right subtree (green) if too deep

we have to transplant left sybtree (blue)
/*p

/\ —— T
“\ / \
P Q Childofp S

q L — \\
DA [\
e S N) =

Child of q

AVL tree: Rebalance by rotation:
Double rotation LR

* When right subtree of left subtree becomes

too deep, lift up the left-right subtree.
q ;'3;&;

S —
N /\ .
R S
- \ // \\
% Condition 1s satisfied? et

> Why rotation LL does not work?

AVL tree: Rebalance by rotation:
Double rotation LR

* When right subtree of left subtree becomes
too deep, lift up the left-right subtree.

r
NP
Children of r > \ / \\
7 14) (19

> Condition 18 satisfied?
> Why rotation LL does not work?

Children of r LG 5

13

17

11

14 19

% Condition 1s satisfied? @

> Why rotation LL does not work? Children of r

35

AVL tree: Rebalance by rotation:
DOUble rOtation RL (just mirror image of LR)

 When left subtree of right subtree becomes

too deep, lift up the right-left subtree.
/& q

/\ o =
r AR [\
p—~a & 7 RS
P S 7S
/\ / — |

AVL tree: Example

* |Insertion of 8

Double
rotation LR 5
N
3 8
VN

7 9

AVL tree: Example

* |Insertion of 6

Double
5 rotation RL 7
—_ N~

3 3 > 8
SN /" \ .
7 9 3 6

7
6

S

AVL tree: Example

* |nsertion of 4 (balance is okay)

7/
— S
3

5
/N N\
3 6

N

4

9

AVL tree: Example

e Deletion of 6

Double
7 A rotation LR 7
5 8 ::; P 'l ‘
3 6 \ 9 / \ \
\ 3 5 9

4

40

AVL tree: Example

* |nsertion of 6 (balance is okay)

7/
— S~
3

4
/N N
3 5

AN

9

6

AVL tree: Example

e Deletion of 8

3/\/\5

\/\

| 9 3
6

Double
7 rotation LR
—
4 9 j> 4

Time complexity of balanced binary
search tree
* Search: O(logn) time
* Insertion/Deletion: O(logn) time

— O(logn) rotations

— Each rotation takes constant time

* |n total, on a balanced binary search tree,
every operation can be done in O(logn) time.

(n is the number of data in the tree)

	Introduction to �Algorithms and Data Structures��7. Data structure (2)� Binary Search Tree and its balancing�
	Review:
	Dynamic search and data structure
	Naïve idea: array or linked list?
	Better idea: binary search tree
	Better idea: binary search tree
	Today: More binary search tree (BST)
	1. Max/min data in BST
	1. Max/min data in BST (Example)�(consider remove them also)
	How about heap?
	Today: More binary search tree (BST)
	We have three ways of enumeration�(general traverse ways of a binary tree)
	How to traverse binary tree: preorder�Data in node  left subtree  right subtree
	How to traverse binary tree: inorder�Left subtree  data in node  right subtree
	How to traverse binary tree: postorder�Left subtree  right subtree  data in node
	Example of code
	Small exercise
	Today: More binary search tree (BST)
	Efficiency of BST
	Today: More binary search tree (BST)
	Nice idea:�(Self-)Balanced Binary Search Tree
	AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]
	AVL tree: Insertion of data
	AVL tree: Insertion of data�Insert x=4
	AVL tree: Insertion of data�Insert x=10
	AVL tree: Insertion of data�Insert x=20
	AVL tree: Insertion of data�Insert x=23
	Today: More binary search tree (BST)
	AVL tree: Rebalance by rotations
	Rebalance of AVL-tree by rotation:�Rotation LL
	Rebalance of AVL-tree by rotation:�Rotation LL
	Rebalance of AVL-tree by rotation:�Rotation RR (just mirror image of LL)
	AVL tree: Rebalance by rotation:�Double rotation LR
	AVL tree: Rebalance by rotation:�Double rotation LR
	(If you apply rotation LL)
	AVL tree: Rebalance by rotation:�Double rotation RL (just mirror image of LR)
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	Time complexity of balanced binary search tree

