Introduction to
Algorithms and Data Structures

9. Sorting (2):
Merge sort, quick sort, analysis, and
counting sort

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/

John von Neumann
1903—1957

MERGE SORT

L]

Merge sort

* It repeats to merge two sorted lists into one

(sorted) list

&l
Ul

34 U 5

[ERY

o

-

e

12 21 33 46 53 56 65 75 97

E@E E lists of length 1

2 65][46 97]B3 56]53 75]R1]lists of length 2

12 46 65 9733 53 56 75][21]lists of length 4

How can you do?

12 33 46 53 56 65 75 97 21]lists of length 8

one sorted list

* First, it repeats to divide until all lists have length 1,
and next, it merges each two of them.

Implementation of merge sort:
Typical recursive calls

The interval that will be sorted: [left, right]

Find center mid = (left + right)/2
/e

left mid right

[left,right]=> [left,mid], [mid+1,right]

Perform merge sort for each of them, and
merge these sorted lists into one sorted list.

How to merge?

left=0 mid=4 right=8
12 46 56 65 97|21 33 53 /5

%i=0 (left -> mid) ti=5 (mid+1 -> right) tk=o (left->right)

Between 2 tops of 2 sequences, move smaller one to the new array

46 56 65 97|21 33 53 75 12

%i=1 ti=5 tk=1
46 56 65 97 33 53 75 12 21
%hl tj=6 tk=2
46 56 65 97 53 75 12 21 33

Wi LIS L= 5

How to merge?

left=0 mid=4 right=8
12 46 56 65 97|21 33 53 /5

%i=0 (left -> mid) ti=5 (mid+1 -> right) tk=o (left->right)

97 75 12 21 33 46 53 56 65
fi=4 tj=8 tk=7
97 12 21 33 46 53 56 65 75

%i=4 tj=9 >right tk:8

When one sequence 1s empty (1>mid or j>right), copy the others

97 12 21 33 46 53 56 65 75 97

£ ot

Task takes right-left+1 steps

Outline of merge sort

We can merge two lists of length
pandginO(p + q) time.

Implementation of merging

We need to merge [left, mid] and [mid+1, right] efficiently

Top of left top of right index of new array Put the Sma”er one
of two tops into b(]

0(29 + C[) T Copy remainders of the
non-empty list to b|[]

Write back to a[] from b[]

Merge sort: Time complexity

e T(n): Time for merge sort on n data

— T(n) = 2T(n/2) + “time to merge”
=2T(n/2) +cn +d (c, d: some positive constant)

* To simplify, letting n = 2k for integer k,
T(2%) =2T(2% ") + 28+ 4d
=202T(2%)+ c2 T+ d)+c2¢ +d
— 22T(2% %) +2e2% + (1 4+ 2)d
=22(2T(2%) 4+ 22 +d) +2c2 + (1 +2)d
= 23T(2" %) +3c2+ (14+2+4)d

=2'T2 Y +ic2k+(1+2+...2"Nd
=2*T(29) + ke2"+ (1 +2+...2)d
—bn+cnlogn+ (n—1)d € O(nlogn)

Merge sort: Space complexity

* |tis easy to implement by using two arrays
al] and b[].

— Thus space complexity is ©(n), or we need n
extra array for b[].

— |t seems to be difficult to remove this “extra”
space.
— On the other hand, we can omit “Write back b[]

to a[]” (in the 2 previous slides) when we use a[]
and b[] alternately.

AV N

merge sort is not used so often...

Monotone segquence merge sort

* Bit improved merge sort from the practical
viewpoint.

* |t first divides input into monotone sequences
and merge them. (Original merge sort does
not check the input)

Example: For 65, 12, 46, 97, 56, 33, 75, 53, 21;
65 12]j6 97]56 33]75 53 27] Divide into monotone sequences

112 46 65 97|21 33 53 56 75 Merge neighbors

12 21 33 46 53 56 65 75 97 Sorted!

Monotone sequence merge sort:
Time complexity

We can merge in O(p+g) time to merge two sequences
of length p and g

After merging, the number of sequences becomes in
half.

— When the number of monotone sequences is h,
the number of recursion is log, h times.

One recursion takes O(n) time
— O(n log h) time in total.

When data is already sorted: h =1 - O(n) time
The maximum number of monotone sequences is n/2
— O(n log n) time in total.

Tony Hoare
1934—

QUICK SORT

C.A.R. Hoare, “Algorithm 64: Quicksort”.
Communications of the ACM 4 (7): 321 (1961)

13

Quick sort

 Main property: On average, the fastest sort!

e QOutline of quick sort:
— Step 1: Choose an element x (which is called pivot)

— Step 2: Move all elements = x to left
Move all elements = x to right

=x = X

— Step 3: Sort left and right sequences independently
and recursively

* (When sequence is short enough, sort by any simple sorting)

14

Quick sort: Example
Step 1. Choose an element x

* Sort the following array by quick sort:
65 | 12 | 46 | 97 | 56 | 33 | 75 | 53 | 21

* Choose x=56, for example;

65 |12 | 46 | 97 | 56 | 33 | /5 | 53 | 21

Quick sort: Example
Step 2. Move element w.r.t x:

°

e Start from [l, r] =[0,n-1], move |l andr,
Swap a[l] and a[r] when a[l] >= x && a[r] < x

65|12 |46 | 97 | 56 | 33 | /5| 53 | 21
— e
21 | 12 | 46 | 97 | 56 | 33 | /5 | 53 | 65
N "\
21 | 12 | 46 | 53 | 56 | 33 | /5 | 97 | 65

~

16

Quick sort: Example
Step 3. Sort left and right sequences recursively

21 | 12 |46 | 53 | 33 | 56 | /5 | 97 | 65
| |
Y Y
Quick sort Quick sort
21 | 12 48N 53 | 33 75 65

J

_'_I

17

Quick sort: Program

Note: In MIT textbook, there 1s another implementation.

18

Quick sort: Time complexity
Worst case
 When the pivot x is the maximum or minimum

element, we divide
ength n - length 1 + length n-1

* This repeats until the longer one becomes 2

» The number of comparisons; Y k € ©(n?)
k=2

Almost as same as the bubble sort...

19

Analysis of QuickSort

—Sorting Problem
Input: An array a[n] of n data
Output: The array a[n] such that
a[l]<a[2]<...<a[n]

% To simplify, we assume that there are no pair i#j with
ali]=alj]

Analysis of QuickSort

— In practical, QuickSort is said to be “the fastest sort”

* Representative algorithm based on divide-and-
conquer

* |f partition is well-done, it runs in O(n log n) time.

* If each partition is the worst case, it runs in O(n?)
time.

...Can we analyze theoretically, and guarantee the
running time?

Analysis of QuickSort

— Review of QuickSort
e Call gsort(a,1,n)
* |f gsort(a, i, j) is called,
—(Randomly) choose a pivot a[m]

—Divide a[] into “former” and “latter” by a[m].
|.e., sort as

ali’l<a[m] fori= i’ <m, and
alj’]>a[m] for m<j’<j.

—Return gsort(a, i, i’), a[m], gsort(a, j’, j) as the
result

Analysis of QuickSort

— Though they say that QuickSort is the fastest in a
practical sense,,,

* When a[m] becomes always the center of

ali]..a[j], we have ‘0@ [C.F]
e can always find
T(n) = 2T(n/2) + (c+1) n the conter i O
and hence T(n) = O(n log n). Hime.
 When a[m] becomes always either ali] or alj],
we have e
T(n)=T(1)*+T(n-1)H(ct+)n What about

and hence T(n) = O(n?). average case?

Analysis of QuickSort

—They say that QuickSort is the fastest in
a practical sense,,,

e Assumption: each item in al[i] ... a[j] is chosen
uniformly at random.

—Thus the kth largest value is chosen as the
pivot with probability 1/(j-i+1)

/[Theorem] An upper bound of the expected
value of the running time of QuickSort is 2n

H(n)~2n log n nce fow
N [~ overhead.

Analysis of QuickSort

4)
[Theorem] An upper bound of the expected value of

\the running time of QuickSort is 2n H(n)~ 2n log n

J

—Notation
» s, is the kth largest item in a[1]...a[n].

» Detine indicator variable X;; as follows

0 s;and s; are not compared in the algorithm
7|1 s;ands; are compared in the algorithm

—Running time of QuickSort)
~ the number of comparisons= ZZXU

i=1 j>i

Analysis of QuickSort

4 p
[Theorem] An upper bound of the expected value of

\the running time of QuickSort is 2n H(n)~ 2n log n

J

— The expected value of the running time of QuickSort=

E[D. D X, 1=) 2 EIX,;1 Linearity of expectation value)

i=1 j>i =l j>i

— Define as ”pij : probability that s, and s; are compared”,

E[X,;]=p,x1+(-p,)x0=p,
Thus consider the value of p;,
—When s;and s; are compared??
1. One of them is chosen as the pivot, and

2. They are not yet separated by gsort up to there

< Any element between s; and s; are not yet chosen as a pivot

Analysis of QuickSort

r 2
[Theorem] An upper bound of the expected value of

the running time of QuickSort is 2n H(n)~ 2n log n
\

.

* Whens; and s; are compared?
1. One of them is chosen as the pivot, and
2. They are not yet separated by gsort up to there
< Any element between s; and s, is not yet chosen as a pivot

— Theombﬁngoprowinspg+psﬁz.”,%4@ﬂsunHONMyatmmdom!
— Thus s; or s, is the first pivot with probability

j—i+l1

Therefore, the expected time of the running time of QuickSort

SR RA D WEAEDN WS N IErED I IEE) I 10

i=1 j>i i=l j>i i=1 j>i Py b i+l Fi5 o k

COMPUTATIONAL COMPLEXITY OF
THE SORTING PROBLEM

Sort on Comparison model

* Sort on comparison model: Sorting algorithms
that only use the “ordering” of data

— It only uses the property of “a>b,a=b,ora<b”;
in other words, the value of variable is not used.

Computational complexity of sort on
comparison model

* Upper bound: O(n log n)
There exist sort algorithms that run in time
proportional to n log n (e.g., merge sort, heap
sort, ...).

* Lower bound: Q(n log n)

For any comparison sort, there exists an input
such that the algorithm runs in time
proportional to n log n.

We consider the lower bound of comparison sorting.

Computational complexity of

comparison sort: lower bound

e Simple example; sort 3 data a, b, c:
First, compare (a,b), (b,c), or (c, a). Without loss of
generality, we assume that (a,b) is compared; then
the next pair is (b,c) or (c,a):

Yeb<c? Yra<c?
yes a<b ves a<b
no no
yes b<c no no a<c yes
a<c < b<c

a<c<b c<a<b a<b<c a<c<b

Computational complexity of
comparison sort: lower bound

 What we know from sorting of {a, b, c}:

— For any input, we obtain the solution at most 3
comparison operators.

— There are some input that we have to compare at
least 3 comparison operations.

= maximum length of a path from root to a leaf is 3,
which gives us the lower bound.

When we build a decision tree such that “the longest path from
root to a leaf is shortest,” that length of the longest path gives
us a lower bound of sorting problem.

Computational complexity of
comparison sort: lower bound

The case when n data are sorted

— Let k be the length of the longest path in an
optimal decision tree T. Then,
The number of leaves of T = 2k

— Since all possible permutations of n items should
appear as leaves, n! = 2k

— By taking logarithm,

k=1g2" > lgn! = Zlg1> Z

1= n/2+1

n. n
p— —1 —
5185 c Onlogn)

Non-comparison sort: Counting sort

* We need some assumption:
datali]€{1,....k} for 1=i=n, k€ 0O(n)
(For example, scores of many students)
e Using values of data, it sorts in O(n) time.

Counting sort

Input: data[i]€{1,...,k} for 1=i=n, k€0O(n)
ldea: Decide the position of element x

— Count the number of element less than x
=>» That number indicates the position of x

Example:

3 7 4 1 2 5

112345 6 7) 112]3/4/5/6 7
1 1 1 1 1 0 1 0 1 2 3 4 5 5

Counting sort

Q. When array contains many data of same values?
A. Use 3 arrays a[], b[], c[] as follows;
(a[]: input, b[]: sorted data, c: counter)
— c[ali]] counts the number of data equal to ali]

— For each j with 0=k,
let c[j] := c[0] + ... + c[j-1] + c[]j], then
c’[j] indicates the number of data whose value is less
than |

— Copy ali] to certain b[] according to the value of c’[]

Counting sort: program

:|> Initialize counter c[]

Count the number
of the value in ali]

} Compute c’[] from c[]

In an efficient way!

Copy a[] to b[]

(DI oD I o D R « D IR « D I « D N D BN « B

Counting sort: Example
Sort integers (3,6,4,1,3,4,1,4)

o . CountingSort(a, b, k){
After (2)' for i=0 to k
c[1=(0,2,0,2,3,0,1) c[i] - o3

e After (3); (2)for j=6 to n-1
C[]=(0224778 c[a[j]] = c[a[j]] + 1;

]=4 => b[c[4]-1] = b[6], c[4]=6 (3)for i=1 to k

]=1 => b[c[1]-1] = b[1], c[1]=1 c[i] = c[i] + c[1-1];

:=4 =>bgcg4;_1; - ;5;’C24;= for j=n-1 to downto ©

=3 =>b] c[3]-1] =bl3], cl3])= b[c[a[311-1] = a[3];

=1 =>b[c[1]-1] = b[0], c[1]= c[a[j]] = c[a[j]] - 1;

=4 =>Db[c[4]-1] =bl[4], c[4]=4 |}

=6 =>Db[c[6]-1] =b[7], c[6]=

=3 => b[c[3]-1] = b[2], c[3]=

SENWE U N

Sort is said to be “stable”
when two variables of the

same value in order after

SUEE >b[c[4]1]— b6, ci4]=6

a[j]] + 1;

(3)for' i=1 to k
c[i] = c[i] + c[i-1];

for j=n-1 to downto ©

w =1 == B[c[I]-1]= C[1]=1
3__4 =>b[[[1-1]] = @g@ﬂ%
[E13]T JJ—=— —C[3]=3
=1=>Db[c[1]-1]= , c[1]=0
@[Z[=4 =>b[c[4]-1] = b[4], c[4]=4 |}

, €[3]

a[1]=6 =>Db[c[6]-1] = b[7], c[6]=7

=3=>Db[c[3]-1]= =2

b[c[a[j]]-1] = a[3];
cfa[j]] = cla[3]] - 1;

Today’s Report

* |In the previous slides, we prove that we need
Q(n log n) time for solving the sorting problem.
On the other hand, counting sort runs in O(n)
time. At a glance, it seems to be contradiction.
But they are not conflict. Explain why.

* Deadline: 10am, Friday Morning

