Introduction to Algorithms and Data Structures

10. Data Structure (3) Data structures for graphs

Professor Ryuhei Uehara, School of Information Science, JAIST, Japan.

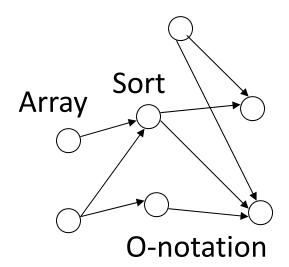
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/

Graph

- "Vertices" (nodes) are joined by edges (arcs)
 - Directed graph: each edge has direction
 - Undirected graph: each edge has no direction

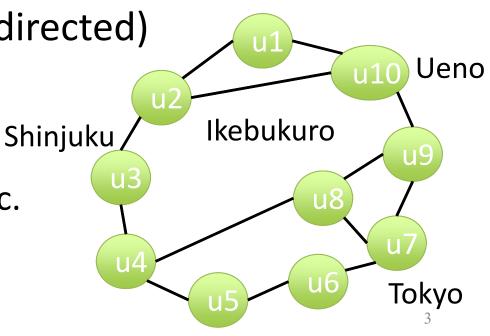

Example: railway in Tokyo

Ikebukuro

Shinjuku

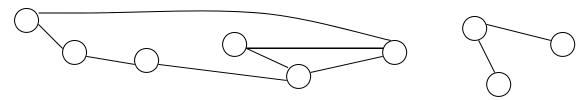
Tokyo

Example: relationship between topics

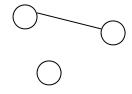


Graph: Notation

- Graph G = (V, E)
 - − V: vertex set, E: edge set
- Vertices: $u, v, ... \in V$
- Edges: $e = \{u, v\} \subseteq E$ (undirected)

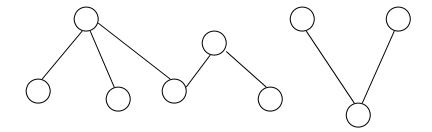

 $a = (u, v) \subseteq E$ (directed)

- Weighted variants;
 - -w(u), w(e)
 - Distance, cost, time, etc.



Graph: basic notions/notations (1/2)

- Path: sequence of vertices joined by edges
 - Simple path: it never visit the same vertex again

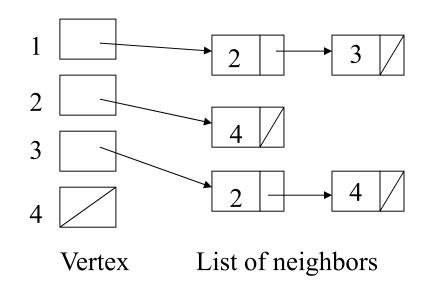


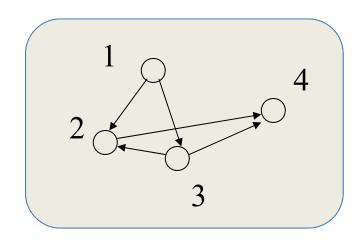
- Cycle, closed path: path from v to v
- Connected graph: Every pair of vertices is joined by path

Graph: basic notions/notations (2/2)

- Forest: Graph with no cycle
- Tree: Connected, and no cycle

- Complete graph: Every pair of vertices is connected by an edge
 - Example: K_5


Computational complexity of graph problems


- The number *n* of vertices, the number *m* of edges;
 - Undirected graph: $m \leq n(n-1)/2$
 - Directed graph: $m \leq n(n-1)$
 - m \in O(n^2)
- Every tree has m=n-1 edges, so $m \in O(n)$.
- Computational complexity of graph algorithm is described by equations of n and m.

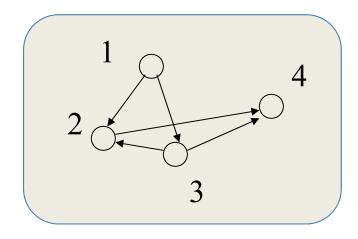
Representations of a graph in computer

• Adjacency matrix $M = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

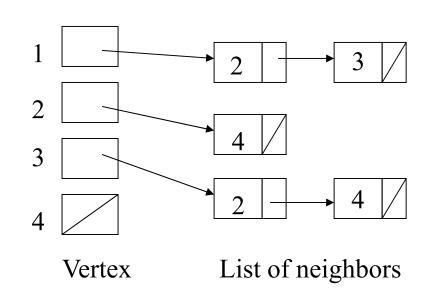
Adjacency list

Representation of a graph: matrix representation (adjacency matrix)

•
$$(u, v) \subseteq E \Rightarrow M[u, v] = 1$$


• $(u, v) \notin E \Rightarrow M[u, v] = 0$

It is easy to extend edge-weighted graph.


$$M = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Representation of a graph: list representation (adjacency list)

- $(u, v) \in E \Leftrightarrow v \in L(u)$
 - -L(u) is the list of neighbors of u

It is easy to extend vertex-weighted graph.

Adj. matrix v.s. Adj. list

- Space complexity
 - Adjacency matrix: $\Theta(n^2)$
 - Adjacency list: $\Theta(m \log n)$
- Time complexity of checking if $(u, v) \subseteq E$?
 - Adjacency matrix: Θ(1)
 - Adjacency list : $\Theta(n)$
 - Q. How about update graph? (e.g., add/remove vertex/edge)